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INTRODUCTION.

“ How charming is divine philosophy !
Not harsh and crabbed as dull fools suppose,
But musical as is Apollo’s lute,
And a perpetual feast of nectar’d sweets,
‘Where no crude surfeit reigns !”—Comus.

IN the first section of the ensuing memoir, which is divided into five sections, I con-
sider the nature and properties of the residues which result from the ordinary process
of successive division (such as is employed for the purpose of finding the greatest
common measure) applied to f(x) and ¢(x), two perfectly independent rational integral
functions of . Every such residue, as will be evident from considering the mode in
which it arises, is a syzygetic function of the two given functions; that is to say, each
of the given functions being multiplied by an appropriate other function of a given
degree in z, the sum of the two products will express a corresponding residue. These
multipliers, in fact, are the numerators and denominators to the successive convergents

to % expressed under the form of a continued fraction. If now we proceed & prior: by

means of the given conditions as to the degree in (z) of the multipliers and of any
residue, to determine such residue, we find, as shown in art. (2.), that there are as
many homogeneous equations to be solved as there are constants to be determined ;
accordingly, with the exception of one arbitrary factor which enters into the solution,
the problem is definite; and if it be further agreed that the quantities entering into
the solution shall be of the lowest possible dimensions in respect of the coeflicients of
f and ¢, and also of the lowest numerical denomination, then the problem (save as to
the algebraical sign of plus or minus) becomes absolutely determinate, and we can
assign the numbers of the dimensions for the respective residues and syzygetic mul-
tipliers. The residues given by the method of successive division are easily seen not

* Conjugate would imply something very different from Syzygetic, viz. a theory of the Invariantive properties
of a system of two algebraical functions,
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408 MR. SYLVESTER ON A THEORY OF THE CONJUGATE

to be of these lowest dimensions ; accordingly there must enter into each of them a
certain unnecessary factor, which, however, as it cannot be properly called irrelevant,
I distinguish by the name of the Allotrious Factor. The successive residues, when
divested of these allotrious factors, I term the Simplified Residues, and in article (3.)
and (4.) I express the allotrious factors of each residue in terms of the leading coeffi-
cients of the preceding simplified residues of / and ¢. In article (5.) I proceed to
determine by a direct method these simplified residues in terms of the coefficients of
fand ¢. Beginning with the case where £ and ¢ are of the same dimensions (m) in z,
I observe that we may deduce from f and ¢ m linearly independent functions of
each of the degree (m—1) in 2, all of them syzygetic functions of f'and ¢ (vanishing
when these two simultaneously vanish), and with coefficients which are made up of
terms, each of which is the product of one coefficient of f and one coefficient of ¢.
These, in fact, are the very same (m) functions as are employed in the method which
goes by the name of Brzout’s abridged method to obtain the resultant to (i. e. the
result of the elimination of x performed upon) fand . As these derived functions are
of frequent occurrence, I find it necessary to give them a name, and I term them the (m)
Bezoutics or Bezoutian Primaries ; from these (m) primaries m Bezoutian secondaries
may be deduced by eliminating linearly between them in the order in which theyare
generated,—first, the highest power of z between two, then the two highest powers of
x between three, and finally, all the powers of « between them all: along with the
system thus formed it is necessary to include the first Bezoutian primary, and to con-
sider it accordingly as being also the first Bezoutian secondary ; the last Bezoutian
secondary is a constant identical with the Resultant of fand ¢. When the m times m
coefficients of the Bezoutian primaries are conceived as separated from the powers of x
and arranged in a square, I term such square the Bezoutic square. This square,
as shown in art. (7.), is symmetrical above one of its diagonals, and corresponds
therefore (as every symmetrical matrix must do) to a homogeneous quadratic function
of (m) variables of which it expresses the determinant. This quadratic function,
which plays a great part in the last section and in the theory of real roots, I term the
Bezoutiant ; it may be regarded as a species of generating function. Returning to
the Bezoutic system, I prove that the Bezoutian secondaries are identical in form
with the successive simplified residues. In art. (6.) I extend these results to the case
of f and ¢ being of different dimensions in . In art. (7.) I give a mechanical rule
for the construction of the Bezoutic square. In art. (8.) I show how the theory of
f(x) and ¢(x), where the latter is of an inferior degree to f, may be brought under
the operation of the rule applicable to two functions of the same degree at the
expense of the introduction of a known and very simple factor, which in fact will be
a constant power of the leading coefficient in f{2). In art. (9.) I give another method
of obtaining directly the simplified residues in all cases. In art. (10.) I present the
process of successive division under its most general aspect. In arts. (11.) and (12.)
I demonstrate the identity of the algebraical sign of the Bezoutian secondaries with
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that of the simplified residues, generated by a process corresponding to the develop-
ment of %: under the form of an improper continued fraction (where the negative

sign takes the place of the positive sign which connects the several terms of an ordi-
nary continual function). As the simplified residue is obtained by driving out an
allotrious factor, the signs of the former will of course be governed by the signs
accorded by previous convention to the latter; the convention made is, that the
allotrious factors shall be taken with a sign which renders them always essentially
positive when the coefficients of the given functions are real. I close the section
with remarking the relation of the syzygetic factors and the residues to the con-

vergents of the continued fraction which expresses %, and of the continued fraction

which is formed by reversing the order of the quotients in the first named fraction.

In the second section I proceed to express the residues and syzygetic multipliers
in terms of the roots and factors of the given functions ; the method becoming as it
may be said endoscopic instead of being exoscopic*, as in the first section. I begin in
arts. (14.) and (15.) with obtaining in this way, under the form of a sum or double
sum of terms involving factors and roots of f and ¢, and certain arbitrary functions
of the roots in each term, a general representative, or to speak more precisely, a
group of general representatives for a conjunctive of any given degree in x to f'and ¢,
i. e. a rational integral function of x, which is the sum of the products of f and ¢
multiplied respectively by rational integral functions of z, so as to vanish of necessity
when f and ¢ simultaneously vanish. This variety of representatives refers not
merely to the appearance of arbitrary functions, but to an essential and precedent
difference of representation quite irrespective of such arbitrariness.

In articles (16.), (17.), (18.), (19.), (20.), (21.), I show how the arbitrary form of
function entering into the several terms of any one (at pleasure) of the formula that
represent a conjunctive of any given degree may be assigned, so as to make such
conjunctive identical in form with a simplified residue of the same degree. The form
of arbitrary function so assigned, it may be noticed, is a fractional function of the
roots, so that the expression becomes a sum or double sum of fractions. I first prove
in arts. (16.), (17.) that such sum is essentially integral, and I determine the weight of
its leading coefficient in respect of the roots of f and ¢ (this weight being measured

* These words admit of an extensive and important application in analysis. Thus the methods for resolving
an equation (or to speak more accurately, for making one equation depend upon another of a simpler form)
furnished by TscmirnmAvuseN and Mr. JErrarD (although not so presented by the latter) are essentially
exoscopic; on the other hand, the methods of Lacraner and Az for effecting similar objects are endoscopic.
So again, the memoir of Jacos:, ““De Eliminatione,” hereinafter referred to, takes the exoscopic, and the
valuable ¢ Nota ad Eliminationem pertinens ” of Professor Ricaeror in CreLLe’s Journal, the endoscopic view
of the subject. In the present memoir (in which the two trains of thought arising out of these distinct
views are brought into mutual relation) the subject is treated (chiefly but not exclusively) under its endoscopic
aspect in the second, third and fourth sections, and exoscopically in the first and last sections.
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410 MR. SYLVESTER ON A THEORY OF THE CONJUGATE

by the number of roots of f and ¢ conjointly, which appear in any term of such
coefficient). Now in the succeeding articles I revert to the Bezoutic system of the
first section, and beginning with the supposition of m and » being equal, I demon-.
strate that the most general form of a conjunctive of any degree in x will be a
linear function of the Bezoutics, from which it is easy to deduce that the simplified
residues of any given degree in x are the conjunctives whose weight in respect of the
roots is a minimum ; so that all conjunctives having that weight must be identical (to
a numerical factor prés), and any integral form of less weight apparently representing
a conjunctive must be nugatory, every term vanishing identically. These results are
then extended to the case of two functions of unlike degrees. The conclusion is, that
the weight of the forms assumed in (16.) and (17.) being equal to the minimum weight,
they must (unless they were to vanish, which is easily disproved) represent the
simplified residues, or which is the same thing, the Bezoutian secondaries.

We thus obtain for each simplified residue a number of essentially distinct forms
of representation, but all of which must be identical to a numerical factor preés, a
result which leads to remarkable algebraical theorems.

The number of these different formulee depends upon the degree of the residue;
there being only one for the last or constant residue, two for the last but one, three
for the last but two, and soon. The formulae continue to have a meaning when their
degree in x exceeds that of f or ¢; but then, as although always representing con-
junctives, they no longer represent residues, this identity no longer continues to sub-
sist. In articles (22.), (23.), (24.), (25.), I enter into some developments connected
with the general formuleae in question: these, it may be observed, are all expressed
by means of fractions containing in the numerator and denominator products of
differences ; the differences in the numerator products being taken between groups
of roots of f and groups of rootsof ¢; and in the denominator between roots of f
inter se and roots of ¢ infer se. A great enlargement is thus opened out to the
ordinary theory of partial fractions.

In art. (26.) I find the numerical ratios between the different formule which
represent (to a numerical factor prés) the same simplified residue, and in arts. (27.)
and (28.) I determine the relations of algebraical sign of these formulee to the sim-
plified residues or Bezoutian secondaries. In art. (29.) I determine the syzygetic
multipliers corresponding to any given residue in terms of the factors and roots of
the given functions; but the expressions for these, which are closely analogous to
those for the residues, cease to be polymorphic. They are obtained separately from
the syzygetic equation, and it is worthy of notice, that to obtain the one we use the
first of the polymorphic expressions for the residue, and to obtain the other the
opposite extremity of the polymorphic scale. In the subsequent articles of this
section, by aid of certain general properties of continued fractions, I establish

a theorem of reciprocity between the series of residues and either series of syzygetic
multipliers.
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Section III. is devoted to a determination of the values of the preceding formulee
for the residues and multipliers in the case applicable to M. Sturm’s theorem, where
@(z) becomes the differential derivative of fx. It becomes of importance to express
the formulee for this case in terms of their roots and factors of fx alone, without
the use of the roots and factors of f', which will of course be functions of the
former. ‘

By selecting a proper form out of the polymorphic scale, the fractional terms of the
series for each residue in this case become separately integral, and we obtain my well-
known formulz for the simplified residues (Sturm’s reduced auxiliary functions) in
temrs of the factors and the squared differences of partial groups of roots. This is shown
in art. (35.). Inart. (36.) the multiplier of /'« in the syzygetic equation is expressed
by formulee of equal simplicity, and in a certain sense complementary to the former.
This method, however, does not apply to obtaining expressions for the multiplier of
Jx in the same equation in terms of the roots and factors of fx; for the separate
fractions whose sum represents any one of these factors it will be found do not
admit of being expressed as integral functions of the roots and factors. To obviate
this difficulty I look to the syzygetic equation itself, which contains five quantities,
viz. the given function, its first differential derivative, the residue of a given degree,
and the two multipliers, all of which, except the multiplier of fx, are known,
or have been previously determined as rational integral functions of the roots and
factors of fx. I use this equation itself for determining the fifth quantity, the multi-
plier in question. To perform the general operations by a direct method required
for this would be impossible; the difficulty is got over by finding, by means of the
syzygetic equation, the particular form that the result must assume when certain
relations of equality spring up between the roots of fir; and then, by aid of these
particular determinations, the general form is demonstratively inferred.

This investigation extends over arts. (38.), (39.), (40.), (41.), (42.), (43.). It turns
out that the expressions for the multipliers of fx are of much greater complexity than
for the multipliers of f'x or for the residues. Any such multiplier consists of a sum of
parts, each of which, as in the case of the residues and of the factors of f'z, is affected
with a factor consisting of the squared differences of a group of roots; but the other
factor, instead of being simply (as for the residues and factors before mentioned) a
product of certain factors of fx, consists of the sum of a series of products of sumns
of powers by products of combinations of factors of fx, each of which series is
affected with the curious anomaly of its last term, becoming augmented in a certain
numerical ratio beyond what it should be, in order to be conformable to the regular
flow of the preceding terms in the series*.

The fourth section opens with the establishment of two propositions concerning

* The syzygetic multipliers are identical with the numerators and denominators (expressed in their simplest

1
. . . . £
form) of the successive convergents to the continued fraction which expresses J};
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quadratic functions which are made use of in the sequel. Art. (28.) contains the proof
of a law which, although of extreme simplicity, I do not remember to have seen, and with
which I have not found that analysts are familiar: I mean the law of the constancy of
signs (as regards the number of positive and negative signs) in any sum of positive and
negative squares into which a given quadratic function admits of being transformed
by substituting for the variables linear functions of the variables with real coeffi-
cients. This constant number of positive signs which attaches to a quadratic func-
tion under all its transformations, and which is a transcendental function of the
coefficients invariable for real substitutions, may be termed conveniently its irertia,
until a better word be found. This inertia it is shown in art. (26.), by aid of a
theorem identical with one formerly given by M. Cavucny, is measured by the
number of combinations of sign in the series of determinants of which the first
is the complete determinant of the function; the second, the determinant when
one variable is made zero; the next, the determinant when another variable as
well as the first is made zero, and so on, until all the variables are exhausted,
and the determinant becomes positive unity. In art. (46.) I give some curious and
interesting expressions for the residues and syzygetic multipliers, under the form
of determinants communicated to me by M. HermiTE ; and in art. (47.) I show how,
by aid of the generating function which M. HermiTE employs, and of the law of
inertia stated at the opening of the section, an instantaneous demonstration may be
given of the applicability of my formulee for M. Strurm’s functions for discovering
the number of real roots of fx, without any reference to the rule of common measure ;
and moreover, that these formulee may be indefinitely varied, and give the generating
function, out of which they may be evolved in its most general form. Had the law
of inertia been familiar to mathematicians, this constructive and instantaneous method
of finding formulz for determining the number of real roots within prescribed limits
would, in all probability, have been discovered long ago, as an obvious consequence
of such law. I then proceed in arts. (48.) and (49.), to inquire as to the nature of the
indications afforded by the successive simplified residues to two general functions
S and ¢; and I find that the succession of signs of these residues serves to determine
the number of roots of f or ¢, comprised between given limits after all pairs of roots of
_either function, contained within the given limits, not separated by roots of the other
function, have been removed, and the operation, if necessary, repeated foties quoties
until no two roots of either function are left unseparated by roots of the other; or in
other words, until every root finally retained in one function is followed by a root of the
other, or else by one of the assigned limits. The system of roots comprised between
given limits thus reduced I call the effective scale of intercalations; such a scale

may begin with a root of the numerator or of the denominator of %; and upon this

and the relative magnitudes of the greatest root of gx and fx it will depend whether
in the series of residues (among which f and ¢z are for this purpose to be counted)
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changes will be lost or gained as # passes from positive infinity to negative infinity. In
art. (50.) I observe that the theory of real roots of a single function given by M. Sturm’s
theorem is a corollary to this theory of the intercalations of real roots of two functions,
depending upon the well-known law, that odd groups of the limiting function f'x lie
between every two consecutive real roots of fr. In art. (51.) I verify the law of reci-
procity, already stated to exist between the residues of fx and ¢x, by an & posterior:
method founded on the theory of intercalations. In arts. (52.), (563.), (54.), I obtain a
remarkable rule, founded upon the process of common measure, for finding a superior
and inferior limit in an infinite variety of ways to the roots of any given function.
This method stands in a singular relation of contrast to those previously known. All
previous methods (including those derived through Newton’s Rule) proceed upon
the idea of treating the function whose roots are to be limited as made up of the
sum of parts, each of which retains a constant sign for all values of the variable
external to the quantities which are to be shown to limit the roots. My method, on
the other hand, proceeds upon the idea of treating the function as the product of
factors retaining a constant sign for such values of the variable. In art. (55.), the
concluding article of the fourth section, I point out a conceivable mode in which the
theory of intercalations may be extended to systems of three or more functions. -
"In Section V. arts. (56.), (57.), I show how the fofal number of effective inter-
calations between the roots of two functions of the same degree is given by the
inertia of that quadratic form which we agreed to term the Bezoutiant to f and ¢
and in the following article (58.) the result is extended to embrace the case contem-
plated in M. Sturm’s theorem ; that is to say, I show, that on replacing the function
of # by a homogeneous function of x and y, the Bezoutiant to the two functions,
which are respectively the differential derivatives of f* with respect to x and with
respect to y, will serve to determine by its form or inertia the total number of real
roots and of equal roots in f (x). The subject is pursued in the following arts. (59.),
(60.). The concluding portion of this section is devoted to a consideration of the
properties of the Bezoutiant under a purely morphological point of view; for this
purpose f and ¢ are treated as homogeneous functions of two variables z, y, instead of
being regarded as functions of « alone. Inarts. (61.), (62.), (63.), it is proved that the
Bezoutiant is an invariantive function of the functions from which it is derived ; and
in art. (64.) the important remark is added, that it is an invariant of that particular
class to which I have given the name of Combinants, which have the property of
remaining unaltered, not only for linear transformations of the variables, but also for
linear combinations of the functions containing the variables, possessing thus a
character of double invariability. In arts. (65.), (66.), I consider the relation of the
Bezoutiant to the differential determinant, so called by Jacosi, but which for greater
brevity I call the Jacobian. On proper substitutions being made in the Bezoutiant
of the (m) variables which it contains (m being the degree in z, y of f and ¢), the
Bezoutiant becomes identical with the Jacobian to f and ¢; but as it is afterwards
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shown, this is not a property peculiar to the Bezoutiant; in fact there exists a whole
family of quadratic forms of m variables, lineo-linear (like the Bezoutiant) in respect
of the coefficients in f and ¢, all of which enjoy the same property. The number of
individuals of such family must evidently be infinite, because any linear combination
of any two of them must possess a similar property; I have discovered, however, that
the number of independent forms of this kind is limited, being equal to the number
of odd integers not greater than the degree of the two functions fand ¢. In arts.
(67.) and (68.), I give the means of constructing the scale of forms, which I term the
constituent or fundamental scale, of which all others of the kind are merely numerico-
linear combinations. This scale does not directly include the Bezoutiant within it,
and it becomes an object of interest to determine the numbers which connect the
Bezoutiant with the fundamental forms; this calculation I have carried on (in arts.
(69.), (70.), (71.)) from m=1 to m=6 inclusive, and added an easy method of con-
tinuing indefinitely. In this method the numbers in the linear equation corresponding
to any value of m are determined successively, and each made subject to a verification
before the next is determined, there being always pairs of equations which ought to
bring out the same result for each coefficient.

In the next and concluding art. (72.), I remark upon the different directions in
which a generalization may be sought of the subject-matter of the ideas involved in
M. Strurm’s theorem, and of which the most promising is, in my opinion, that which
leads through the theory of intercalations. Some of the theorems given by me in
this paper have been enunciated by me many years ago, but the demonstrations have
not been published, nor have they ever before been put together and embodied in that
compact and organic order in which they are arranged in this memoir,—the fruit of
much thought and patient toil, which I have now the honour of presenting to the
Royal Society.

June 16, 1853.

In a supplemental part to the third section I have given expressions in terms of the
roots of ¢x and fx for the quotients which arise in developing ;—; under the form of a

continued fraction, and some remarkable properties éoncerning these quotients. In a
supplemental part to the fourth section I have given an extended theory of my new
method of finding limits to the real roots of any algebraical equation. This method, so
extended, possesses a marked feature of distinction from all preceding methods used Sor
the same purpose, inasmuch as it admits in every case of the limits being brought up
mnto actual coincidence with the evtreme roots, whereas in other methods a wide and
arbitrary interval is in general necessarily left between the roots and the limits.
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SectioN 1.

On the complete and simplified residues generated in the process of developing under
the form of a continued fraction, an ordinary rational algebraical fraction.

Art. (1.). Let P and Q be two rational integral functions of x, and suppose that the
process of continued successive division leads to the equations
P -MQ+R,=0
Q —M,R,+R,=0
R,—M,R,+R;=0 N ¢ )

so that
Q 1 1 1
—F=M0""’ M]— Mg""‘ &Co . . ° . . . . . . . (2.)

which is what I propose to call an improper continued fraction, differing from a
proper only in the circumstance of the successive terms being connected by negative
instead of positive signs.

M,, M,, M,, &c., R,, R,, R,, &c. are, of course, functions of «: the latter we may
agree to call the 1st, 2nd, 3rd, &c. residues (in order to avoid the use of the longer
term “ residues with the signs changed”) ; and by way of distinction from what they
become when certain factors are rejected, we may call R,, R,, R,, &c. the complete

D

1]

residues. Each such complete residue will in general be of the form -lj‘—'-g‘-, N, and D,

being integral functions of the coefficients only of P and Q, but ¢, an integral
function of these coefficients, and of x: p, may then be termed the sth simplified

. N . . .
residue, and D the sth allotrious factor. Suppose P to be of m and Q of » dimensions

in «, and m—n=¢e, the process of continued division may be so conducted, that all
the residues may contain only integer powers of 2; and we may upon this supposition
make M, of e dimensions, and M,, M,, M,, &c. each of one dimension only in x; so
that R, R,, Ry, . . . . will be respectively of (n—1), (n—2), (n—3), &c. dimensions
in .

P and Q are supposed to be perfectly unrelated, and each the most general function
that can be formed of the same degree. From (1.) we obtain

R,=M,.Q—P h
R,=M,R,—Q
—=(M,M,—1)Q—M,.P L ()
Ry=(M,M,M,4M,+M,)Q— (M,M,— 1)P
&e. =&ec.

o/
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and in general we shall bave
R=Q.Q+P.P, . . . . . . . . . . . . (4)

where it is evident that Q, will be of e4+(s—1), and P, of (s—1) dimensions in z.

Art. (2.) Hence it follows that the ratios P,: Q, : R, may be ascertained by the direct
application of the method of indeterminate coefficients, for Q, will contain e, and
P will contain + disposable constants, making e+2: disposable constants in all.
Again, Q,.Q and P,P will each rise to the degree n+e+2—1 in x; but their sum R,
is to be only of n—: dimensions in z. Hence we have to make (n+4e4i—1)—(n—1),
i.e. e+21—1 quantities (which are linear in respect to the given coefficients in
P and Q, as well as in respect to the new disposable constants in P, and Q,) all
vanish, that is to say, there will be e+2:—1 linear homogeneous equations to be
satisfied by means of e+2: disposable quantities ; the ratios of these latter are, there-
fore, determinate, so that we may write

P=2.(P)
Q=AQ) ;s - - « « « . o ..o (5
Rlle(Rl)

and when (P), (Q), (R)) are taken prime to one another, it is obvious that (R) will
be in all of e4-2: dimensions in the given coefficients, ¢. e. of : in respect of the
coefficients of P, and of e+ in respect of those of Q: A, will correspond to what I
have previously called the allotrious factor; being in fact foreign to the value of R,
as determined by means of the equation (4.), and arising only from the particular
method employed to obtain it through the medium of the system (1.): it becomes a
matter of some interest and importance to determine the values of this allotrious
factor for different values of +*.

* These are identical with what I termed quotients of succession in the London and Edinburgh Philosophical
Magazine (December, 1839) ; but by an easily explicable error of inadvertence, the quantities “ Q,,” ** Q,,” &c.
therein set out are not as they are therein stated to be, the quotients of succession or allotrious factors them-

selves, but the ratios of each such to the one preceding, if in the series; so that—
“Q,” s A,
A

I3 » is 2

Al
3 A
“Qy’is =2
Ay

&e. .

This error is corrected by my distinguished friend M. Sturm (LiouviLre’s Journal, tom. viii. 1842. Sur un
théoreme d’Algtbre de M. Svrvester), who appears, however, to have overlooked that I was obviously
well acquainted with the existence and nature of these factors, and their essential character, of being perfect
squares in the case contemplated in his memoir and my own, MM. BorcuarpT, TERQUEM, and other writers,
in quoting my formule for M. SturM’s auxiliary functions, have thus been led into the error of ailuding to them
as completed by M. Strurm.
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Art. (8.). This may be done by the following method, which is extremely simple,
and would admit of a considerable extension in its applications, were it not beside
my immediate purpose to digress from the objects set out in the title to the memoir,
by entering upon an investigation of the special or singular cases which may arise in
the process of forming the continued fraction, when one or more of the leading
coefficients in any of the residues vanish; such an inquiry would require a more
general character to be imparted to the values of the quotients and residues than I
shall for my present purposes care to suppose.

Let us begin with supposing e=1, and write

JS=ax"+ b e+ &e. }

¢=(an_l+@.rn—2+ym —3+ &C. (6.)

Let +) be the first residue of g, and « of %, and therefore of ;‘—%, so that » is the second
residue of —g

Let #=A(w), » being entirely integer, and A a function of the coefficients in ' and ¢.
If we make k:%, N and D being integer functions, D will evidently be L*; where L

denotes the first coefficient in the simplified residue «’¢, and is evidently of two
dimensions in «, 3, &c., and of one in a, b, &c.; Dw is therefore of 2x 241, 7. e. five
dimensions in «, 8, &c., and of two dimensions in @, b, &c.; but w (by virtue of what
has been observed of the equations in system (5.)) is of three dimensions in «, 38, &c.,
and of two in @, b, &c. Hence N is of two dimensions in «, 3, &ec., and of none in
a, b, &c. This enables us at once to perceive that N=a’,

for 4 is of the form f—(pax-+q)e, 1

and w is of the form ¢— (p'a+¢ ) [ ) (7.)

But N=0 makes w vanish, and therefore, upon this supposition, f and ¢ would appear
to have a common algebraical factor 4, that is to say, N vanishing, would appear to
imply that the resultant of fand ¢ must vanish, so that N would appear to be con-
tained as a factor in this general resultant, which latter is, however, clearly inde-
composable into factors—a seeming paradox—the solution of which must be sought
for in the fact, that the equation N=0 is incompatible with the existence of the usual
equations (7.) connecting f, ¢, 4 and w: but this failure of the existence of the
equations (v.) (bearing in mind that N has been shown to be a function only of the
set of coefficients , 3, &c.), can only happen by reason of « vanishing whenever N
vanishes ; @ must therefore be a root of N, or which is the same thing, N a power of
(x) and hence N=¢’,

The same result may be obtained & posteriori by actually performing the successive
divisions ; if the coefficients of any dividend be a, b, ¢, d, &c., and of the divisor

312
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@, 3, 7, 9, &c., the first remainder forming the second divisor will be easily seen to
have for its coeflicients—

! a b ¢ ) a b d ) a b e
= 0 a B |, S 0 e B |, 2| 0 « B | &e.
e B vy @ B3 9 e OB ¢
a b ¢
Hence the coefficients in the next remainder (making | 0 « £ =m) will be .
« B v
each of the form of the compound determinant,—
[ @ B 7 )
a b ¢ a b d
0 0 o« 0 0 o ¢
1_:?. < e f v e B L.
a b ¢ a b d a b e
« f 0 o y 0 o 3
Le By @ B 9 @ f e

The compound determinant above written will be the first coefficient in the
remainder under consideration; the subsequent coefficients will be represented by
writing f, ¢ g, v, &c., respectively in lieu of ¢, ¢. Omitting the common multiplier

1 . . .
-3 the determinant above written is equal to

a b e a b e a b d a b d
2y 0 ¢« 8 X 0 o d — 0 ¢« ¥y X 0 « vy }

1 e B vy x B ¢ a B 9 @« B 0o

a b ¢ l’ a b d a b c *l

+ 0 « 3 X B.0O e« v —y.0 a B

e B ¢y 1 @« 3 9 e B v J

The last written pair of terms are together equal to
a b c J
0 « B X | —dBe’+cye’+an(Bi—y?) },

a B v l

which is of the form «’A — a’8°(3—9*)w, and the sum of the first written pair is of the
form «’B+(af3*. aB0—ayB.ayP)«. Hence the entire determinant is of the forma?(A 4-B),
showing that «® will enter as a factor into this and every subsequent coefficient in the
second remainder, as previously demonstrated above.

It may, moreover, be noticed, that this remainder, when «* has been expelled, will
for general values of the coefficients be numerically as well as literally in its lowest
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terms, as evinced by the fact that there exist terms (ex. gr. wa’ye) having -1 for their
numerical part. The same explicit method might be applied to show, that if the first
divisor were e degrees instead of being only one degree in x lower than the first
dividend, «*** would be contained in every term of the second residue ; the difficulty,
however, of the proof by this method augments with the value of e; but the same
result springs as an immediate consequence from the method first given, which
remains good mutatis mutandis for the general case, as may easily be verified by the
reader. Applying now this result to the functions P and Q, supposed to be of the
respective degrees » and n—e in x, and calling the coefficients of the leading terms
in the successive simplified residues a,, ,, «,, &c., and the leading coefficient in Q e,

-and before denoting the successive allotrious factors by A, A,, &c., it will readily be
seen that

1 1 1 1
MN=—r MANTS A= A=, &c.
1 ue+l 2 1 a? 3 2 a: A’l )"3 u;’ b
. att! o) at .o
LeMN=—m MNhN=— 7\3::"“‘1—‘2 4=—"§-§?:
a o) attlal al.ol
and in general
2 2 2
A _ 1 .“1 OZveeslly, |
2m+17 ye+1 2 9 a2
elaeeedd, )
L.atad..ad e e e e .. .
7\2m=“e+1 2° 74 o2m—2

°u?.u§.a§...a§m_l

Art. (4.). Strictly speaking, we have not yet fully demonstrated that the complete
allotrious factors are represented by the values above given for A, but only that these
latter are contained as factors in the allotrious factors; we must further prove that
there exist no other such factors. This may be shown as follows: it is obvious from
the nature of the process that the complete residues will always remain of one dimen-
sion in respect of the given coefficients, i. e. first of one dimension in the set a, b, c,
&ec., and of zero dimensions in a, 3, ¥, &c.; then conversely, of one dimension in
o, 3, v, &c., and of zero dimensions in @, b, c, &c., and so on, the residues being
evidently required to conform in their dimensions to those of the first dividend and
the first divisor alternately. These coefficients then are always of unit dimensions
in respect to the given coeflicients ; whereas it has been shown (art. 2.) that the
simplified residues in respect to these coefficients are successively of the dimensions
2-4-e, 44e, 6+¢, &c.

Let the complete residue corresponding to A,, be M.A,,.0,,,

e+l g2 o2 2

. attn &y % %m—2

2. €. ,""“—é‘ ? ;—2 ...... = o 0oy
-1 3 5 2m—1

or say M.L; in passing from e, to «,,., the dimensions rise 2 units for all values of
q except zero, and when ¢=0 the dimensions increase per saltum from 1 to 2--e;
hence the total dimensions of L in the joint coefficients will be

((e41) = (2e+42))— (m—1)4+4m+te=1,
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and therefore M is of zero dimensions, and A, is the complete allotrious factor. In
like manner if the complete residue corresponding to A,., be M. Ag,yy iy,

2,2 2
e M.
. €. er1° 2 gzttt T Oty
a oy o o
2m

or say M.L, the dimensions of L. will be
—(e+1)—m .4+ (e+2.(2m+1)), i.e. 1,

and hence, as in the preceding case, M is of zero dimensions, and 2,,., is the com-
plete allotrious factor.

Art. (5.). I proceed to show how the simplified residues may be most conveniently
obtained by a direct process, identical with that which comes into operation in
applying to the two given functions of x the method familiarly known under the
name of BEzour’s abridged method of elimination. Let us call the two given func-
tions U and V, and commence with the case where U and V are of equal dimensions
(n) in @. The simplified sth residue will then be a function of n—: dimensions in «,
and of s dimensions in respect of each given set of coeflicients, and may be taken
equal to V..U+U..V, where V, and U, are each of (+—1) dimensions in «.

Let

U=aq,.2"+a,. 2" ' 4a,.a"24..... “+a,,

V=b,.a"+b,.a" ' +b,.a"*+..... +b,,
we may write in general {m being taken any positive integer not exceeding n},

U=(a@"+a,a" '+ ... 4a,) 2" "+ (@@ F @ 0" "2 ... ta,)

V=(ba"+ba" "'+ ....4b,)2" "+ (b @™+ b, 2”2 4. .+ D,).

Hence

(b +b a4 ....+b, ) U= (a2t aa™ ' +....+a,)V

=, K" '+, K,.a" 24, K"+ ..... +..K,,

where if we use (r, s) to denote a,.b,—a,.b, for all values of » and s, we have
Ki=(0,m+1) K,=(0,m+2)+(1,m+1) ,K;=(0,m43)+(1,m4+2)+(2,m+1),
and in general ,K;=3(r, s), the values of » and s admissible within the sign of
summation being subject to the two conditions, one the equality »+s=m--i, the
other the inequality » less than i. By giving to m all the different values from 0
to m—1 in succession, and calling ba™+ba™'+....+b,, ax"+a,.a"'+..+a,
respectively Q,, and P,, we have

Q .U-=P, V=K, 2" '+ K" *+..... 4+ K, "

Q .U=P .V=K,.2'+ K" 2+.... + K,

Q. .U—=P, V=K, o'+ K" 24..... + K, > . . . . (10)

9.)

Qn—l‘U_Pn—l’V=n—lK1 wn_l+n—lK2xn—2+ ----- +n-—lKn J
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The right-hand members of these (z) equations I shall henceforth term the Bezou-
tians to U and V.

[The determinant formed by arranging in a square the n sets of coeflicients of the
n Bezoutians, and which I shall term the Bezoutian matrix, gives, as is well known,
the Resultant (meaning thereby the Result in its simplest form of eliminating the
variables out) of U and V.]

Eliminating dialytically, first 2"~ between the first and second, then 2"~ and 2"~
between the first, second and third, and so on, and finally, all the powers of » between
the 1st, 2nd, 3rd, nth of these Bezoutians, and repeating the first of them, we obtain a
derived set of (n) equations, the right-hand members of which I shall term the secondary
Bezoutians to U and V, this secondary system of equations being

Q, U—=P, . V=K 2" '+ K"+ K"+ ...+ K, R
(K.Q—K,Q)U—(K,.P,—K,.P)V=L,.a" 4+ La"*+...4+ L,_,
((KioaKo— K Ko) Qo (K, Ko — K, LK) Q+ (K K — K LK) . Q) U
—(( KKK K Pyt 6K K — KK Py (K, Ko — KK PV

=M,o"*+M,.a"*+....4+M,_,
&c.=&e. J

And we can now already without difficulty establish the important proposition, that

S (1)

NCERT . U )
the successive simplified residues to 5, expanded under the form of an improper con-

tinued fraction, abstracting from the algebraical sign (the correctness of which also
will be established subsequently), will be represented by the » successive Secondary

Bezoutians to the system U, V.
For if we write the system of equations (11.) under the general form

3. U-H,V=A, 2»'4+Ba""'+ &ec.,

the degree of &, and H, in « will be that of Q,_, and P._,, ¢.e. +—1; and the dimen-
sions of A, B,, &c., in respect of each set of coefficients is evidently (+) ; consequently,
by virtue of art. (2.), Ax"'4Ba'*4 &ec., which is the ith Bezoutian, will (saving at
least a numerical factor of a magnitude and algebraical sign to be determined, but
which (when proper conventions are made) will be subsequently proved to be +1)

represent the sth simplified residue to ?—,*, as was to be shown.
Art. (6.). More generally, suppose U and V to be respectively of z--e and » dimen-
sions in «.

* V is supposed to be taken as the first divisor, and the term residue is used, as hitherto in this paper,
throughout in the sense appertaining to the expansion conducted, so as to lead to an improper continued
fraction, in that sense, in fact, in which it would, more strictly speaking, be entitled to the appellation of excess
rather than that of residue.
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Let U=a,.2""*+a,.2""*Fa,.2a"" 2+ &c.
V=b,.a"+4ba"'+ &c.
Making
U=(ax**™+a,. 2" 4&c. +a,.,)2" "+ () 2" ™ +&e. +-a,.,)
V=(bam+ba"'+ ... +b,)x" "+ (b,na" " +&e. +b,),
we obtain the equation

Q.. U~P,,.. . V=K a4+ K, 2" +&c. +,.K,, . . . . . . (12)
where

Qm=(b0mm+ LR +bm)Pe+m=(a0'xe+m+ e +ae+m)
=000y 3 WBa=0a0.bpniat 0. bysi5 -0 Ke=a0 by A0, b &e. 0,0,
,,,K.+l=llo-bm+.+,+&c. +a,+,.bm—a.+m+,.bo &e.=&e.

By giving to m every integer value from 0 to (r—1) inclusive, we thus obtain n
equations of the form of (12.), each of the degree n4e—1 in @, and of one dimension
in regard to each set of coefficients.

In addition to these equations we have the (e) equations of the form

2 V=by.a"*+b 2"+ &e. +ba% . . . . . . . (138)

in which » may be made to assume every value from 0 to (e—1) inclusive, and the
left right-hand side of the equation for all such values of x will remain of a degree
in 2 not exceeding n+4e—1, the degree of the equations of the system above described.
There will thus be (¢) equations in which only the (b) set of coefficients appear, and
(n) equations containing in every term one coefficient out of each of the two sets.

The total number of equations is of course n+e. Between the (e) equations of the
second system (13.) and the (r) occurring first in order of the first system (12.), we
may eliminate dialytically the e4-r—1 highest powers of x, and there will thus arise
an equation of the form

b, ,U—w,,_,.V=La" " Lla""'+4 &e. +L (14.),

where 4,_, and w,.,_, are respectively of the degrees r—1 and e4-r~—1 in z, and
L,L,... (L) are of (r) dimensions in the (a) set, and of (e+4r) dimensions in the (b)
set of coefficients, and consequently La"~'+L'a*~""'+4-...4 (L) must satisfy the con-
ditions necessary and sufficient to prove its being (to a numerical factor prés) a
simplified residue to (U, V).
Thus suppose U=a,.2*+a,.2*+a,.2*+a,.x+a,

V= ba* +bx +b,.
Thén, corresponding to the system of which equation (13.) is the type, we have

V=b,a*+b,.2+b,

aV=b,.0°+b,.a*+b,.x.
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Again, to form the system of which equation (12.) is the type, we write
by . U—(a,2*+a,2+a,) V=>0b(a,x+a,) — (¢, +a,x+a,) (bx+b,)
=—ab,.2*—(a,b,+a,b)2*+ (bya;— a,.b,—a,.b)x+ (b,a,—a,.b,)
(box+b,) . U— (a4 a0+ ax+a,)V=(bx+b)a,— {(a,c*+a,x*+a,x+a,)b,
= — a,.b,8°— a,0,2°+ (by. a,— a,.b,)x -+ (b,a,—b,.a;).

Combining the two equations of the first system with the first of the second system,
we obtain the first simplified residue La4L/, where

0 b, b,
—L=b, b, b,
a,-b, a,.b,4a,.b, a,.b,4a,.b,—b,.a,
and
0 b, b,
L'= b, b, 0
@,.b, a,b,+a,b, a,.by—b,.a,.

By again combining the two equations of the first system with both of the second
system, we have the determinant

0 b, b, b,

Re b, b, b, 0
a,.b, a,.b,+a,.b, a,.b,-+a,.b,—b,a, a,.b,—b,.a,
@,.b, a,. b, a,.b,—b,.a, a,.b,—a,.b,

which is the last simplified residue, or in other terms, the resultant to the system U, V.
Art. (7.). It is most important to cbserve that the Bezoutian matrix to two func-
tions of the same degree (n) is a symmetrical matrix, the terms similarly disposed
in respect to one of the diagonals being equal.
Thus retaining the notation of art. (5.), so that

0, )=aB—be (1,2)=by—ca (2,3)=cd—dy

0, 2)=ay—ca (1,3)=bd—dB &ec.
(0, 3)=ad—du &e.
&c.

&ec. &c., when n=1 the Bezoutian matrix consists of a single term (0, 1) ;
when n=2, it becomes
(0,1)  (0,2)
0,2) (1,2);
when n=3, it becomes
0,1) (0,2) (0, 3)
(0, 3)
(0, 2) ( + ) (1, 3)
(1, 2)

(O: 3) (1) 3) (2: 3);
MDCCCLIII. 3 K
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when n=4, it becomes
0, 1) (0,2) (0,3) (0,4)

(0, 3) /(0, 4)
(0, 2) (+) <+) (1, 4)
(1, 2) 1,3

0, 4\ ((1,4)
o () (&) e
(1,8)/ \(2,3)

(07 4) (1> 4) (2: 4) (3: 4) H
when n=5, it becomes
0,1) (0,2) (0,3) (0,4) (0,5)

(0, 3)\ /(0, 4)\ /(0, 5)
(0,2)(+)(+)(+)(1,5)
(1,2)) \(1,8)) \

(1, 4)
(0, 5)
o, 9\ [+ \ /a5
(0, 3) @) |+ ] @9
(1, 3) + (2, 4)
(2, 3)

(0,5)\ ((1,5)\ [(2,5)
o0 (&) () () e
(1,4)/ \(2,4)/ \(3,4)

0,8) (1,5) (2,5) (35) (45)

and so forth. Every such square it is apparent may be conceived as a sort of sloped
pyramid, formed by the successive superposition of square layers, which layers pos-
sess not merely a simple symmetry about a diagonal (such as is proper to a multipli-
cation table), but the higher symmetry (such as exists in an addition table), evinced in
all the terms in any line of terms parallel to the diagonal transverse to the axis of
symmetry being alike*. Thus for n=5, the three layers or stages in question will
be seen to be, the first—

0,1) (0,2) (0,8) (0,4) (0,5)

(0,2) (0,3) (0,4) (0,5) (1,5)

(0,3) (0,4) (0,5) (1,5) (2,5)

(0,4) (0,5) (1,5) (2,5) (3,5)

(0,5) (L,5) (2,5) (3,5) (4,5)3

(1,2) (1,8) (1,4)
(1,8) (1,4) (2,4
(1,4) (2,4) (3,4);

the second—

and the third—
2, 3).
In general, when (n) is odd, say 2p+1, the pyramid will end with a single term
* A square arrangement having this kind of symmetry, viz. such as obtains in the so-called Pythagorean

addition table as distinguished from that which obtains in the multiplication table, may be universally called
Persymmetric.
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( p, (p+ 1)), and when even, as 2p, with a square of 4 terms,
((p—2), @>=1), ((p-2),p)
((P'—Q), p)’ ((p—l)a p)

Each stage may be considered as consisting of three parts, a diagonal set of equal
terms transverse to the axis of symmetry, and two triangular wings, one to the left,
and the other to the right of this diagonal ; the terms in each such diagonal for the
respective stages will he

0,m); (Ln—=1); (2, @=2)); ...5 (p, (p+1)),
p being g—] when =z is even, and 71;-—1 when = is odd.

If we change the order of the coefficients in each of the two given functions, it will
be seen that the only effect will be to make the left and right triangular wings to
change places, the diagonals in each stage remaining unaltered. The mode of
forming these triangles is an operation of the most simple and mechanical nature,
too obvious to need to be further insisted on here.

Art. (8.). When we are dealing with two functions of unequal degrees, » and n--e,
we can still form a square matrix with the coeflicients of the two systems of (e) and
(n) equations respectively, but this will no longer be symmetrical about a diagonal ;
it is obvious, however, that if we treat the function of the lower degree, as if it were of
the same degree as the other function, which we may do by filling up the vacant
places with terms affected with zero coefficients, the symmetry will be recovered ;
and it is somewhat important (as will appear hereafter) to compare the values of the
Bezoutian secondaries as obtained, first in their simplest form by treating each of the
two functions as complete in itself, and secondly, as they come out, when that of the
functions, which is of the lower degree, is looked upon as a defective form of a
function of the same degree as the other. A single example will suffice to make the
nature of the relation between the two sets of results apparent.

Take Jr=a 2*+b 2*+ca’+dx+te
pr=0.2'40.2°+yx’4-dx +.

The general method of art. (7.) then gives for the Bezoutian matrix
0 ay as as

an as
o () (%)
by bd

ac be
ad ( -+ ( + ce—ey
by cd—dy

as  be cc—ey  di—ed.

bz

We shall not affect the value either of the complete determinant, or of any of the
minor determinants appertaining to the above matrix, by subtracting the second line
of terms, each increased in the ratio of b:a from the first line of terms respectively ;

3 K2
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fz
the matrix so modified becomes
0; ay; ad; ac
ay; ad; ac ; 0

be

ad; az+0d; (+ ; ce—ey
cd—dy

as;  be; cc—ey; de—ed.

Again, adopting the method of art. (6.), we should obtain the matrix

0; v; 0; €
v; 9; £; 0
be
0; as—0bd; -+ ; Cce—ey
cd—dy
ag;  be; cc—ey;  di—ed.

Hence it is apparent that the secondary Bezoutians obtained by the symmetrizing
method will differ from those obtained by the unsymmetrical method by a constant
factor @®; and so in general it may readily be shown that the secondary Bezoutians,
by the use of the symmetrizing method, will each become affected with a constant
irrelevant factor a°, where (w) is the difference of the degrees of the two functions, and
(@) the leading coeflicient of the higher one of the two. When (@) is taken unity, the
Bezoutian secondaries, as obtained by either method, will of course be identical.

Art. (9.). There is another method* of obtaining the simplified residues to anytwo
functions U and V of the degrees » and n-}-e respectively, which, although less elegant,
ought not to be passed over in silence. This method consists in forming the identical
equations (of which for greater brevity the right-hand members are suppressed).

V=&ec.
x2V=&ec.
z' . V=&e.
U=&ec.

2. V=&e.
x.U=&ec.
. V=&e.
22 U=&ec.
22 V=&ec.
&e.=&e.
"' . U=&e.

a8t V=&e.

# Originally given by myself in the London and Edinburgh Philosophical Magazine, as loug ago as 1839 or
1840 ; and some years subsequently in unconsciousness of that fact, reproduced by my friend Mr. Caviey, to
whom the method is sometimes erroneously ascribed, and who arrived at the same equations by an entircly
different circle of reasoning.
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If we equate the right-hand members of (e42:) of the above equations to zero,
and then eliminate dialytically the several powers of  from x"****~! to 2"~**' (both
inclusive), the result of this process will evidently be of (e-+) dimensions in respect
of the coefficients in V, and of + dimensions in respect of the coeflicients in U ; and of
the degree 2~ in « it will also be of the form

(A4-Bz+.. L) U4 (F4Ga+ ... +QaY),
and by virtue of art. (2.) must consequently be the sth simplified residue to the
system U, V.

Art. (10.). The most general view of the subject of expansion by the method of
continued division, consists in treating the process as having reference solely to the
two systems of coefficients in U and V, which themselves are to be regarded in the
light of generating functions. To carry out this conception, we ought to write

U=a+a,.y+a,.y*+ay*+&e. ad inf.
V=b,+b,.y+b,.y*+by’+&c. ad inf.,
and might then suppose the process of successive division applied to U and V, so as
to obtain the successive equations
U~M,V 4+R,=0
V -M,R,+R,=0
R,—M,R,+R,;=0
&e. &e.,

M,, M,, M,, &c. being each severally of any degree whatever in y, and in general
the degree of y in M, being any given arbitrary function ¢ (s) of ». The values of the
coefficients of the residues R,, R,, R, ..., or of these forms simplified by the rejection
of detachable factors, becomes then the distinct object of the inquiry, and will, of
course, depend only upon the coefficients in P and Q and the nature of the arbitrary
continuous or discontinuous function ¢(:), which regulates the number of steps
through which each successive process of division is to be pursued. Following out
this idea in a particular case, if we again reduce to our two initial functions the forms
previously employed, and write

U=gq,.a"+a,.2"' 4 &ec.

V=b,.2"+b,.x" '+&c.;
and if, instead of making, according to the more usual course of proceeding, the
divisions proceed first through one step and ever after through two steps at a time
which is tantamount to making ¢1=1 ¢(1+4»)=2, we push each division through one
step only at a time, and no more (so that in fact ¢(¢) is always 1), we shall have

U—m,. V+R =0

V —mx. R,4+R,=0

R,—m,. R,+R,=0

R,—m,.x.R;+R,=0

&e. &e.,
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my, My, My, &c. being functions of the coefficients only of U and V; and it is not
without interest to observe (which is capable of an easy demonstration) that the
simplified residues contained in R,, R,, &c., found according to this mode of develop-
ment, will be the successive dialytic resultants obtained by eliminating the (s—1)th
highest powers of x between the s first of the system of the annexed equations (sup-
posed to be expressed in terms of z)

U=0
V=0

2. U=0
2. V=0
2?U=0
22 V=0
&e. &e.
2 U=0
2. V=0.

If we combine together 2i4-1 of the above equations, the highest power of « entering
on the left-hand side will be 2"*, and we shall be able to eliminate 2i of these factors,
leaving 2"~ the highest power remaining uneliminated. If we take 2, i.e. 7 pairs of
the equations, the highest power of  appearing in any of them will be a**~!, and we
shall be able to eliminate between them so as still to leave 2"+ =1-@-1 4 ¢ a7~i a5 before,
the highest power of x remaining uneliminated ; and it will be readily seen that such
of the simplified residues corresponding to this mode of development as occupy the
odd places in the series of such residues, will be identical with the successive simplified

. . . . U
residues resulting from the ordinary mode of developing 57 under the form of a con-

tinued fraction.

Art. (11.). It bas been shown that the simplified vesidues of fr and gx resulting
from the process of continued division are identical in point of form with the
secondary Bezoutians of these functions, but it remains to assign the numerical
relations between any such residue and the corresponding secondary.

To determine this numerical relation, it will of course be sufficient to compare the
magnitude of the coefficient of any one power of « in the one, with that of the same
power in the other; and for this purpose I shall make choice of the leading coeflicients
ineach. In what follows, and throughout this paper, it will always be understood that
in calculating the determinant corresponding to any square the product of the terms
situated in the diagonal descending from left to right will always be taken with
the positive sign, which convention will serve to determine the sign of all the other
products entering into such determinant. Now adopting the umbral notation for
determinants*, we bhave, by virtue of a much more general theorem for compound

* See London and Edinburgh Philosophical Magazine, April 1851.
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determinants, the following identical equation :—

Q0. .Q,,_, % a,a,a;...a,,,

(7202 2 AR 2, N P
_ <alaga3...am_lam> % (ala2...am_lam+l>
Qoo eollyy Oy, g eeelp 1 Cppy

(a,azaa...am_,am )X (alaz...a,,,_,aer ,)
06,0, .. 06y %y s @y 1Oy

“m—-l“m+l
and consequently

ala2a3'°'am—-lxa 1QoQ3e Qg Qo Uy

00,00y e sl 0 Opllges ey olpelipyy

0 ay0s...0,,_\a, ) (a 3. m—lam+l>
\a1w2w3...wm_lw O 0ge e s Oy (&g

<a,az...am_, a, )2
O 0gan sy ol iy

and consequently when
{alag...am_, a, }—-O
Qoo Clpyy Oy

ayy... Ay, Al Oy Ol

and

0\ Cys O L7 2N U A/ S

m=—1

will have different algebraical signs, it being of course understood that all the quantities
entering into the determinants thus umbrally represented above are supposed to be
real quantities. This theorem, translated into the ordinary language of determinants,
may be stated as follows :—Begin with any square of terms whether symmetrical or
otherwise, say of r lines and r columns; let this square be bordered laterally and
longitudinally by the same r new quantities symmetrically disposed in respect to one
of the diagonals, the term common to the superadded line and column being filled up
with any quantity whatever; we thus obtain a square of (r<4-1) lines and columns;
let this be again bordered laterally and longitudinally by (r<1) quantities symme-
trically disposed above the same diagonal as that last selected, the place in which
this new line and column meet being also filled up with any arbitrary quantity ; and
proceeding in this manner, let the determinants corresponding to the square matrices
thus formed be called D,_,, D,, D,,,, D,.,,.... this series of quantities will possess
the property, that no term in it can vanish without the terms on either side of that
so vanishing having contrary signs. Thus if we begin with a square consisting of
one single term, we may suppose that by accretions formed after the above rule it
has been developed into the square (M) below written, and which of course may be
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indefinitely extended :—

I m p
b n ¢
n ¢ r ou; . . . .« . . . . (M)
g r d v

t u v e
r here begins with the value (1), and D,, D,, D,, D,, D,, D, will represent the pro-
gression, ‘

a | m p s
a 1 a bomop gy g
a ! I b n ¢
1; a; s L b ong ;5 o momo ¢ r o ou (TL)
l b m n ¢ r
m n c . g4 P oo d v
P 1 s t u v e
so if we use the matrix
a | m p s
I b n q t
m n ¢ r u
p q r d v
s ¢t u v e
the determinants D,, D,, D,, D,, D; representing
a | m p
a | m .
a; a l; ' b n; {¢ b n q;&c.
I b m n ¢ r
m n ¢
p g r d

will possess the property in question ; the line and column /, b; 7', b not being identical,
the first deterininant D, representing (1) must not be included in the progression.

We shall have occasion to use this theorem as applicable to the case of a matrix
symmetrical throughout, and we may term the progression (IT) above written a pro-
gression of the successive principal determinants about the axis of symmetry of the
square matrix (M), and so in general. Now it is obvious that the leading coefficients
of the successive Bezoutian secondaries are the successive principal determinants
about the axis of symmetry of the Bezoutian squares; they will therefore have the
property which has been demonstrated of such progressions; to wit, if the first of
them vanishes, the second will have a sign contrary to that of 41; if the second
vanishes, the third will bave a sign contrary to that of the first, and so on.

Art. (12.). Now let fo and px be any two algebraical functions of  with the leading
coefficients in each, for greater simplicity cupposed positive: and in the course of

developing % under the form of an improper continued fraction by the common pro-

cess of successive division, let any two consecutive residues (the word residue being
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used in the same conventional sense as employed throughout) be
Az +Ba''4+Ca'?4 &ec.
B'a'-' +-Cl2' 4D+ &e.
The residue next following, obtained by actually performing the division and duly
changing the sign of the remainder will be

{ —0)-(F-B) —g—f}m‘-’+ &c.,

which is of the form

e BM— AC* a2+ &e.

Thus the leading coefficients in the complete unreduced residues will be

A: B gl BM—ac?),
and when reduced by the expulsion of the allotrious factor will become A; B';
B'.M—A C*, and consequently, when B’ the leading coefficient of one of the simpli-
fied residues vanishes, the leading coefficients of the residues immediately preceding
and following that one will have contrary signs.

First, let

SJr=aa"+ba"'+&ec., Pr=ar"4Pa"'+&e.

As regards the numerical ratio of each Bezoutian secondary to the corresponding
simplified residue, it has been already observed that there are always unit coefficients
in the latter of these, and the same is obviously true of the former ; hence if we call
the progression of the leading coefficients of the simplified residues

Rl; R2§ Ra? RA) &C.,
and that of the leading coefficients of the Bezoutian secondaries
B13 B,; B,; BA’ &.C.,
we have _
B,==4R, B,=#R, B,=4R, B,=+R,, &c.

It may be proved by actual trial that B,=R, and B,=R,. Moreover, since the
signs are invariable, and do not depend upon the values of the coefficients, we may
suppose B,=0 (which may always be satisfied by real values of the quantities, of
which B, is a function) ; we shall also, therefore, have R,=0, and consequently B,
has the opposite sign to that of B,, and R, the opposite sign to that of R,, which is
equal to B, ; hence when B,=0, B, and R, are equal, and consequently are always
equal; in like manner we can prove that R, and B, have the same sign when
R, and B, vanish, and consequently are always equal, and so on ad libitum, which
proves that the series B,, B,, ... B, is identical with the series R,, R,, ... R,, and
consequently that the Bezoutian secondaries are identical in form, magnitude and
algebraical sign with the simplified residues. Secondly, when fr and ¢z are not of
the same degree, it haus been shown that the secondaries formed from the non-

MDCCCLIII. 3L
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symmetrical matrix corresponding to this case will be the same as those formed from
the symmetrical matrix corresponding to fr and ®(x) (where @z is ¢(z) treated by
aid of evanescent terms, as of the same degree as fr), with the exception merely of a
coustant multiplier (a power of the leading coefficient of fx) being introduced into
each secondary. By aid of this observation, the proposition established for the case
of two functions of the same degree may be readily seen to be capable of being
extended, from the case of f and ¢ being of the equal dimensions in x, to the
general case of their dimensions being any whatever.

Art. (13.). Before closing this section, it may be well to call attention to the nature
of the relation which connects the successive residues of fr and ¢x with these
functions themselves, and with the improper continued fractional form into which
% is supposed to be developed in the process of obtaining these residues.

If gz be of n degrees, and fx of n--e degrees in (n), we shall have

gr_ 1 _ 1 1 1

fo Q= = g— 4,
where Q, may be supposed to be a function of x of the degree (e), and ¢,, ¢, ... ¢,
are all linear functions of x; the total number of the quotients Q,, ¢,, ... ¢, being of
course (n) when the process of continued division is supposed to be carried out until
the last residue is zero. Upon this supposition the last but one residue is a constant,
the preceding one a function of x of the first degree, the one preceding that a function
of x of the second degree, and so on.

Let us call the residue of the degree ¢ in @, 3,; it will readily be seen that the

successive complete residues arranged in an ascending order will be
s0) SO'qm So(qn—]'qu- 1)) SO(Qn—z'qn—l-qn—qndg_qn) H &C.,
being in the ratios of the quantities

1 11
15 g3 Gu1— 05 qn—2'—'§:l§;;&c-

Again, we shall have in general
Af=Lp=%,. . . . . . . . . . . (15)

A, being an integral function of x of the degree n—i—1, and L, an integral function
of @ of the degree (n4e)—s—1; and it is easy to see that the successive convergents

to the continued fraction—
1 1 1

have their respective numerators and denominators identical with those of the

fractions

An—l An—z 'A'n-s
I ) L 5 &e.

n—1 n—2

n—3

Adopting the language which I have frequently employed elsewhere, I call 3, a
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syzygetic function, or more briefly, a conjunctive of f and ¢, and A, and L, may be
termed the syzygetic factors to 3, so considered. If we divide each term of the
equation (15.) by the allotrious factor (M), we have

A, L__

M/ nf=R
where R, is the sth simplified residue to (f; ¢); and if we call %:—.r,, and Iﬁ:t,, S0
as to obtain the equation

r.f—t.o=R, . . . . . . . . . . (16)
we see that tl‘, the fraction formed by the component factors to any simplified residue

4

of (f, ¢), will be identical in value (although no longer in its separate terms) with
one of the corresponding convergents to }5, exhibited under the form of an improper

continued fraction. I shall in the next section show how, not only the successive
simplified residues, but also the component syzygetic factors of each of them, and
consequently the successive convergents, may be expressed in terms of the roots of
the two given functions.

Since the preceding section was composed the valuable memoir of the lamented
Jacosi, entitled “De Eliminatione Variabilis ¢ duabus Equationibus Algebraicis,”
CreLLE, vol. xvi,, has fallen under my notice. That memoir is restricted to the con-
sideration of two equations of the same degree, and the principal results in this
section as regards the Bezoutic square and the allotrious factors applicable to that
case will be found contained therein. The mode of treatment however is sufficiently
dissimilar to justify this section being preserved unaltered under its original form.

Secrion II.

On the general solution in terms of the roots of any two given algebraical functions
of x of the syzygetic equation, which connects them with a third function, whose
degree in (X) is given, but whose form is to he determined.

Art. (14.). Let fand ¢ be two given functions in « of the degrees m and = respect-
ively in «, and for the sake of greater simplicity let the coefficients of the highest
power of z in f and ¢ be each taken unity, and let it be proposed to solve the
syzygetic equation

r et p+S=0, . . . . . . . . .. (1)

where 9, is given only in the number of its dimensions in 2, which I suppose to be (i) ;
but the forms of 7, ¢, 3, are all to be determined in terms of A, 4,... A, the roots of
JSand 2, 7,,...7, the roots of ¢.

I shall begin with finding J,; and before giving a more general representation of
9., I propose now to demonstrate that we may make

=3P, .., X(@=h)(x—h)...(x—h)}, . . . . . . (18)
3L2
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where P, . .., is used to denote

,( (hy,,,—n)(hg,,,—m) - . . (hg,, , =)
X(’lq,ﬂ—’?x)(hq,“_”z) oo (b, =)
X (b, ,—n)(hy, —n) - o . (g, ,—mn) R.(hy hy...h,),

;X(hqm—nl)(hqm'—%) A (kgm—ﬂn) J
R(h, h,,...h,) denoting any rational symmetrical form of function whatever of the

quantities preceded by the symbol R, and ¢, g¢,...¢; ¢;,,...g,, being any permutation
of the m indices 1, 2,...m.
Suppose =0 and ¢=0, then x is equal to one of the series of roots

AL

h, hy.. .k,
and also to one of the series of roots
N Agee oty
Suppose then that r=h,=»,,

and consider any term of ..

If in any such term (a) is found in the series ¢, ¢,...q;, then

(x—h,)(x—h,)...(2— hq‘) =0,
But if not, then (a) must be found in the complementary series Ry B, ps o5 Bg 5
and consequently P, ., will contain a factor h,—7, and P, ,=0; in every case
therefore
Pq,qz---q,x(w'—hq,)(‘r—kqg)'"(x—hq,)=on

and therefore 3, as expressed in equation (18.) is a syzygetic function of f and ¢;
accordingly we have found a function of the sth degree in 2, and of course expz‘eSs-
ible by calculating the symmetric functions as a function only of # and of the coeffi-
cients of f and ¢, which will satisfy the equation

‘ 7. f—t,.0+3,=0.
[It will be remembered that by virtue of art. (2) we know & priori that all the
values of 3, satisfying this equation are identical, save as to an allotrious factor,
which is a function only of the coefficients in f and ¢.] It is clear that we may
interchange the 4 and », m and », and thus another representation of a value of 9,
satisfying the equation (17.) will be

r(”q-{-l_hl) (”q+2—h2) cee (”q+1._hm)7

(77q+2 - hl) (”q+2_h2) cee (”q+2—'ilm)
3= 2R Mg 1) X\ (45— P) (lyss—Ps) oo (hyss—hy) @ =2 )(@—=1)..(2 ).

L (g, =) (1, —ho)..(n,, — ) |
Art. (15.). If we employ in general the condensed notation

lLm,n,..p
Ay oy eun ¥
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to denote the product of the differences resulting from the subtraction of each of the
quantities A, w, ... » in the lower line from all of those in the upper line /, m, », ... p,
the twe values above given for 3, may be written under the respective forms

I/ TP
2R(ll‘&hhflz""hq,) [ e l‘hn] (‘z"" hq.) (m—hqz) oo (JL’ - hq,)

1 Na e,

and

7, R 1nb 2...”7‘
SR (1) [ ot ;m] X (2=n) (@—1,)...(x—1,)

in each of which equations disjunctively and in some order of relation each with each
G G25 G5 +oos Gn=1, 2,3, ..., m,

and
gl’ 52:' gs ceey §n=], 2, 3, ey N

These two forms are only the two extremities of a scale of forms all equally well

adapted to express 3, ; for let » and v be any two integers so taken as to satisfy the
equation

v4r=s,

denote a rational form of function which remains unaltered in value when any two
of the quantities under each and either (the same one) of the two bars are mutually
interchanged, then we may write

Ch, h, ..h,
Rk h, ...k, 5 0,7, ...7,\X . "
( Nttt 2 Ty et 5,,) ”Ev+l ”Ev+2.“;7€n

=2 (19.)

X (@ —=hy)(@—hy).o (2= hy) X (2—1, ) (@—715) .. (-r—ﬂz)

For if, as above, we suppose x=h,=7., any term of 3, in which ¢,, g,, ... ¢, comprise
among them £, or in which £%,...5, comprise among them 7., will vanish by virtue of
the factors (x—h,)(r—h,,)...(x—h, ) X ('T"”g,)(“’_”gg)m(m"”zy) ; but if neither A, nor

7, is so comprised, then %, must be one of the terms in the cowplementary series
@ot1> Qoras ---Gms and 7, one of the terms in the complementary series §,.,, & 2 ... &
and therefore one of the quantities A,,,, &,,,,» --- &, Will equal one of the quantities

,in qu stion will vanish by virtue of
Mg prd Mg o g and consequently the term of J, in quest y

h

Ty+1 T+2""" Im

the factor [ J vanishing. In either case therefore every term included

Wgyir Myra M
within the sign of summation vanishes when x=h,=7., i. e. whenever f(#)=0 and
p=(z)=0. Hence 9, as given by equation (19.), will satisfy the syzygetic equation
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7. f—t.0+3,=0 for all values of v and v which make v4-v=y, and for all symme-

Art. (16.). 1 shall now proceed to show how to assign the arbitrary function whose
form is denoted by this symbol in such a manner as to make ¥, become identical
with a simplified residue to f'and ¢. To this end I take for R(h,hy,...k;,5 kK, ... K,

the value
lihqlh%...h%i,
Ny Ny oes?
R= he € . (20)

{hq‘ — } ) {/le ) ng ’
hqv+lkqv+2“'hqm kﬁy+1l{§y+2"'kfn

gz L0 T ] LMot ] o b )} (0 @) (=)} (21)

_ hy  hy, "‘h% AR % o % 13 % tn
[lzqmlzqm...hqm} X [ﬂzyﬂnzﬁz--.n&}

I shall first show this sum of fractions is in substance an integral function of the

quantities hh,...h,; kk,..-k, For greater conciseness write in general x—h=E,
x—n=H, we have then, since h~—»=H—E, h,—h, =E, —E, 7, —1, =H, —H,

[ By He | [Hy He o Hy
E,E,.-E, |*|E, B B | 5o

S’:=2 5 I 't
EquL,,vH. . hqm o H5y+1H5v+2 ...H, e
E, E, .E, || H, H, ..H

On reducing the fractions contained within the sign of summation to a common

we shall then have

VE L L (22)

denominator, 3, will take the form D-l\.%, where D will be the product of the m.m+2~

differences of E,, E,, ...E, subtracted each from each, and A the corresponding
product of the differences inter se of H,, H,, ...H,.

Hence, unless the sum in question is an integral function of the E’s and H’s, it will
become infinite when any two of the E series, or any two of the H series of quantities
are made equal. Suppose now E,=E,; the terms in (22.) which contain E,—E, in
the denominator will evidently group themselves into pairs of the respective forms,

E..E,..E,)x (HgHg...H L Mg, 2 Uiy,
(B B i) X (e Eu)xl:Hg‘I‘Igz...Hgv:,X[Hg H, Hz]

EE, ..E, | [H; H .00
EE, ..E, |*|Hy, Hy ..H;

vy1” y+1 Sy’

V417 Sy’
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E E,...E E, E,  ..E
(E2°E‘13"'E¢I,) X (Hng%“'ng) X li 3 qu X [ dy+) qu

and
HyHe,...Hy, H; ... Hg

£
] V41 V42
E.E,, "'E% Hy Hg ...Hg
EE, ..E, |*|Hy Hy ..H |’

v+1 T vt

the sum of this pair of terms will be of the form

- E, E,
v ) m .[HEIHZZ...HJX[H%sz Hg
Q') E—-E, E,
\ I:Equ+1qu+2"'
- E, E,
L2 oE .[Hngg...HgJ [Hg z Hg
Q IEQ—EI E,
':Eqv+lEqv+2 B

. . P . .
where Q, it may be observed, does not contain H,—H,, so that q remains finite

when H,=H,.
The above pair of terms together make up a sum of the form

P 1 ¢E, EJyE,—g(E,, El)\bE

Q'E,—E, VE, x VE,
which (as the numerator of the third factor vanishes when E,=E,) remains finite on
that supposition. Hence the whole sum of terms in (22.) which is made up of such
pairs of terms, and of other terms in which E,—E, does not enter, remains finite
when E,—E,=0, and therefore generally when D=0, and similarly when H,—H,=0,
and therefore also when A=0; hence the expression for & in (22.) is an integral
function of the E and H series of quantities, as was to be proved.

Art. (17.). Let us now proceed to determine the dimensions of the coefficient of ',
the highest power of « in this value of §,, when supposed to be expressed under the
form of an integral function (as it has been proved to be capable of being expressed)
of hy hyo.. by s 2, %9.0m,3 .

This coefficient is the sum of fractions the numerators of each of which consist of
two factors, which are respectively of vX» and of (m—v)X (n—») dimensions in
respect of the two sets of roots taken conjointly, and the denominators of two factors
respectively of v.(m—uv) and » X (n—v) dimensions in respect of the same.

Consequently, the exponent of the total dimensions of the coefficient in question

=v X1+ (m—v)(n—v)—v(m—v)— (v. (n—-—v))

=(m—v—y) X (n—v—)

=(m—i).(n—1),
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and thus is seen to depend only on the degree s in x of 3, and not upon the mode of
partitioning s into two parts v and », for the purpose of representing 3,, by means of
formula (19.)

Art. (18.). I shall now demonstrate that every form in this scale (to a numerical
factor preés) is identical with a simplified residue to f, ¢ of the same degree / in .
Any such simplified residue is like 3, a syzygetic function, or to use a briefer form
of speech, a conjunctive of f, ¢ ; and if we agree to understand by the “ weight” of any
function of the coefficients of f and ¢ its joint dimensions in respect of the roots of
S and ¢ combined, I shall prove,—1st, that any simplified residue of f and ¢ of a given
degree in « is that conjunctive, whose weight in respect of the roots of f and ¢ is less
than the weight of any other such conjunctive ; and 2nd, that 3, as determined above
(in equation 24.), is of the same weight as the simplified residue, and can therefore only
differ from it by some numerical factor. For the purpose of comparison of weights,
it will of course be sufficient to confine our attention to the coefficients of the
highest (or any other, the same power, for each) in x of the forms whose weights are to
be compared.

Suppose f to be of m dimensions, and ¢ to be of » dimensions in «; and let m=ne.

Suppose

Af+L.o=Ar+Ba"+&e. +K . . . . . L 0 L L (28)
A=n. 27227 - &e. 44,
L=la"" 41 .2+ &e. +1,..

the number of homogeneous equations to be satisfied by the ¢4-1 quantities A, ...,
and the ¢g+40-+41 quantities w,, p,...p,4, Will be m-+4-g—i, and therefore ¢+1 and
g+e+1 taken together must be not less than m-+4-g—i+-1, 7. e. 29+e-+-2 must be not
less than ¢+m—i+1, i. e. 4 not less than m—i—e—1; and if this inequality be
satisfied 2¢+e+2—(g4+m—i—1)+1, i.e. ¢g+i+e—m+42 will be the number of
arbitrary constants entering into the solution of equation (23.).
If g be greater than (n—1), let g=(n—1)+4¢;
and let (A=) '+ )2+ ..+ (M)
L)y=l.a"r L. L () 5
and let (A), (L) be so taken as to satisfy the equation
(A)f+@L).o=A2'+Ba'+...4+K;
-and make E=(A)+(f+gr+...+ha' )0
X=L)=(f+gz+...4 ') f,
/> &-..h being arbitrary constants ;
then Ef+X.0=(A)fF+(L)p=Axr'+-Bar'+...4+K.
Now the total number of arbitrary constants in the system (A) and (L) will be
n—1+4i4e—m-+2, i.e. i41; hence the total number of arbitrary constants in = and
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X will be i4-14-¢, i. e. g—n+i4+2, which is equal to ¢g+i+e—m+2, the number of
arbitrary constants in the most general values of A and L. Hence {A=E; L=X} is
the general solution of A.f+L.p=Az'+Bs'"'4...4+K; and consequently the most
general form of Ax'4-Ba*~'+ ... 4K, which is evidently independent of the (¢) arbi-
trary quantities f, g...A, will contain the same number of arbitrary constants as enter
into the system (A) and (L), 7. e. i41.

Art. (19.). Let us now begin with the case of greater simplicity when m=n,
i.e. e=0; and let us revert to the system of equations marked (10.) in Section I., in
which U and V are to be replaced by f and .

Ist. Let i=n—1, and therefore 41, the number of arbitrary quantities in the
conjunctive is n.

From the system of equations (10.), we have for all values of ¢, ¢,, ;. ..0,,

(e:Qo+2. Q... +e.- Qn—l)f
—(ePote, Pt 4, . Po)o
=(e - Kite Ki+... 4.0 K)o - &e,,
and consequently the most general value of 9,_, in the equation
Tporo =1 0+, =0,
where Yoo =Ax ' +Ba 4., +L
will be obtained by making
Tn—lzfl-Qo+€2-Q1+ +§nQn
tyy=—e.Py—g..P1...—p,.P,,
which solution contains », i. e. the proper number of arbitrary contants.

Again, if i=n—2 i4+1=n—1, which will therefore be the number of arbitrary
constants in the most general value of §,_, of the equation

Tn-.—2f"'" tn—2'@+sn—2=()‘
This most general value of ,_, is therefore found by making
7'n—2=€’1Q0+€’2-Q1+ cee +§’,n- Qn
tpoy=—¢ Py—¢,.P...—¢,.P,
where ¢, ¢'5,...¢, are no longer entirely independent, but subject to the equation
fll . I{1+§’2- 1K1+ aee +§’,n-n—1K1=07
so as to leave (n— 1) constants arbitrary.
We thus obtain §,_,=(¢,\K,+¢5.. Ko+ ... +¢en-1Ks)a"?*+&e.  In like manner, and
for the same reasons, the most general values of 3,_, in the equation
Tpesgef—tng . @+9,_,=0
will be found by making
7.n—3=fll,'Q0_|_§;,~Ql_l"""'l"ffrll,'an--l

" " "
tn-—3= _fl'Po_gz'Ql T el ) Pn—l’
MDCCCLIII. 3 M
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"

where ¢, g, ...¢, are subject to satisfying the two equations
ET-K1+§'2’-1K1+--- +Elrlvn—1K1=O
E;,-Kz'l'?’z, 1K2+ oo +§Irlz~n—1Kz=O>

so as to leave (n—2) constants arbitrary; and we thus obtain

s= (el . Ky+ep. Ko+ ... e, Ky)a" - &e.,
and so on, the number of independent arbitrary constants in & decreasing (as it ought)
each time by one unit as the degree of  descends, until finally, if 7,. f—%,.0+3,=0,
9, being a constant, the general value for 3, is found by making

7=(2)) . Qu+ () Q4. .+ () - Qur
ty=—(e)Py— ()P, —...— (&) . P
where ¢, g,, ..., ave subject to satisfy the (n—1) equations
(e).K,+&c.=0
(&) .K,+&e.=0

(&) -K,_,+&e.=0,
which gives 3, =K., (), +:K,(e)+ ...+, K, (e),.

Now evidently the lowest weight in respect to the roots of U and V that can be
given to (¢K,+e¢, K,+...4¢, ,-.K)2"'4&c., when the multipliers ¢, ¢, ...0, are
absolutely independent, is found by taking ¢ =1 ¢,=0 ¢,=0...¢,=0, which makes the
weight of the leading coefficient in J,_,, the same as that of K,, i. e. 1.

Again, when one equation,

31 K1+§/2 K+ -+§In w5, =0,
exists between the (¢)’s, the lowest weight will be found by making
a=K, g=—K, =0 ¢=0...¢,=0,
which makes the weight of the leading coefficient in J,_, depend on
1K1 Kz—Kl 1K2,
which is of the weight 143, i. e. 4 in respect of the roots of £ and ¢.
Similarly, 3,_, willhaveits lowest weight when its leading coeflicientisthe determinant
Kl K2 K3
lKl IKZ 1K3
2Kl 2K2 2K39
the weight of which is 14-34+5=9; and finally, the lowest weighted value of ¥, is
the determinant represented by the complete Bezoutian square; the weight in
general of §,_; being 143+ ...4-(2:—1), 7. e. %, or which is the same thing otherwise
expressed, the weight of the leading coefficient of the lowest-weighted conjunctive of f
and ¢ of the degrees in x is (n—s)(m—:s)*. It will of course have been seen in the fore-

* n and m are supposed equal and s=n—i.
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going demonstration, that the weight of ,K', [which means 3(«,.b,—a,.b,) a,, a, being
the coefficients of ", 2"~ in f, and b,, b, of the same in ¢] has been correctly taken
to be r+-sin respect of the roots of f'and ¢ conjoined.

Art. (20.). If now we proceed in like manner with the general case of m=n--e, it
may be shown, in precisely the same way as in the preceding article, that the most
general value of any conjunctive of f'and ¢ will be a linear function of (e) functions,

' a2 ta, @74 +a,
2 Sa,.0* Fa,. 2" F...Fa,.x
't 4a,.a" fa,.2" +...4a, 27

"' ta,. 2™ &e. +a,x°",
and of the (») functions,

Ky K44+ K,

Ko+ K,.a"*4...4+ K,

&e. &c.
Ky Ky a4 K,

and that consequently, if the degree of such conjunctive in & be (r—1), it will be of
the lowest weight when it is a linear function of the entire (e) upper set of functions,

and (s) of the lower set; and consequently, the coefficient of the highest power of x
in such conjunctive will be the determinant

Ko Ky KK oKite
K K KK, Kire
Ko Ky KK K,
Ky nKy K K -1 Kise
1 a, /2 7 P/ PN Ay,

1 Ayeeennns Ay Qeeerennnnns Qiypy

1....... Aiy Gyevrernnas Qipos

1 a,

the weight of which is evidently that of
oK XK XK X K X (@)
ie. 1+34+54...4(2i—1)+e.i
i e. e, or i(e-}2), which is (n—s)(m~—) if i=n—i.
3Mm2
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Hence the weight of the leading coefficient in the lowest-weighted conjunctive of
JSand ¢ of the degree  in @ is (m—1)(r—:), m being the degree of f and n of ¢.

From this we infer that any conjunctive of f and ¢ of the degree +, of which the
leading coefficient is of the weight (m—:)(n—) (all the coefficients being of course
understood to be integral functions of the roots of f and ¢), must, to a numerical
factor prés, be equivalent to any other of the same weight; and furthermore, any
supposed function of x of the sth degree which possesses the property characteristic ofa
conjunctive of vanishing, when f and ¢ vanish simultaneously, but of which the weight
of the leading coefficient would be less than (m—:)(n—), must be a mere nugatory
form and have all its terms identically zero*.

Art. (21.). We have previously shown, art. (16.), that &, as defined by equation
(21.), is an integral function of the roots /' and ¢, and vanishes when f and ¢ vanish.
Moreover, its weight in the roots has been proved to be (m—)(n—:), and consequently,
if by way of distinguishing the several forms of 3, we name that one where s in the
equation above cited is supposed to be divided into two parts, v and », 3, ,, we have
for all values of v and », such that v4» is not greater than =, 3, , to a constant nume-
rical factor prés identical with the (v-4v)th simplified residue to (f, ¢), so that the
form of 3, , depends only upon the value of v+-».

Art. (22.). It must be well borne in mind that this permanency of the value of
3, .-, for different values of v has only been established for the case where ¢ can be
the degree of a residue to f and ¢, that is to say, when ¢ is less than the lesser of the
two indices m and n. When ¢ does not satisfy this condition of inequality, the
theorem ceases to be true. It is clear that when m=n and v+vy=m=mn, 3, , which
always remains a conjunctive of f and ¢, can only be a numerical linear function of f
and ¢; and I have ascertained when m=n on giving to » and » the respective values
successively (0, n), (1, n—1), (2, (n—2)), ... (n, 0)

(n

—1)(n—2) .
that S0, n=f3 Sl,n-—lz(n_ l)f‘l‘@ H 32,7‘_2:—__,1).%"___2]_‘_ (n'— 1)§D
Yoo 1 =+ (=1)0, 3, ,=0¢.
Thus, by way of a simple example, let

JS=2Far+ b=(x—h,)(x—h,)
p=a*+ar+P=(2—7)(r—2,)

N, o= (B—h)(@—hy)J £ o) = (2 h,) (2 hy) =f'
B N

* And more generally it admits of being demonstrated by precisely the same course of reasoning, that the
number of arbitrary parameters in a conjunctive of the degree 4, and of the weight (m—i)(r—3)+¢ in the roots
cannot (abstraction being supposed to be made of an arbitrary numerical multiplier) exceed the number &.
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HaH
s _ k, k,
%, =3(r—h)( mm
Lhs |7 U,
x —h _kl
- EE_T?{;“E%—TQ A=k (h— )},

i.e. =2%;21 . {k__l__];. ((.Z'— kl)(hl'—kl)(kz'—kz) }
1=y (F—=fe\  —(x—Fk,) (hy—k,) (ho—F))
=321 (b= ke -+ (Bl (b))}
= (2—h) 2+ (x— ho)x— (ky + o) o+ (hohry+ i )
=(Jvz—(h,+b2)x—|—hlk2)+(x2—(kl—i—k2)x+k,k2)
= (2"t ax+0)+ (r*4-ax+4-3)
=f+¢;
so we find also &, ,=¢.

“Art. (23.). The expression 3, ,, which is universally a conjunctive of f and ¢, con-
tinues algebraically interpretable so long as v+ has any value intermediate between
(0) and m+-n; when v-+»=0, we must of course havev=0 and »=0, and §, , becomes
the resultunt of f and ¢ when v+v=m-+n; we must also have the unique solution
v=m and v=n, and J,, , becomes necessarily X ¢, which we thus see standsin a sort
of antithetical relation to the resultant of f'and ¢,say (f,®). Nor is it without interest
to remark that £x ¢=0 implies that a root of f or else of ¢ is zero; and (f, ¢)=0
implies that if a root of the one of the functions is zero, so also is a root of the other,
i. e. that a root of each or of neither is zero. As ¢ increases from 0 to » or decreases
from m+n to m—1, the number of solutions of the equation v+4r=1 in the one case,
and the number of admissible solutions of the equation v-4y=1 in the other case, which
is subject to the condition that » must not exceed n, continues to increase by a unit at
each step ; there being thus n-4-1 different forms 3, , when v-+v=n, and the same
number when v4+r=m—1. For all values of ¢ intermediate between n and (m—1)
(both taken exclusively) it is very remarkable that 3, , will vanish, as I proceed to
demonstrate.

Art. (24.). The weight of the coefficient of the highest power of 3, , (v4» being
equal to ?) is (m—i)(n—1), and consequently, when 7 is greater than », and less than
m, 9, , would contain fractional functions of the roots of f and ¢, if there were in it a
power &, but 3, , has been proved to be always an integer function of the roots. Hence
the coefficient of «* will be zero, and so more generally the first power of x in 3, ,, of
which the coefficient is not zero, will be 2#, subject to the condition (since evidently
the weight of the several coeflicients goes on increasing by units as the degree of the
terms in « decreases by the same) that » be not less than (m—i2)(i—n); let then
w=(m—1)(i—n), 3,,, becomes of the form Ax"~“4Ba"~“"'4 &c., where A is of zero
dimensions ; but this is impossible if {—w <n, for then A2*~“4- &ec. is a conjunctive of
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weight lower than the lowest-weighted simplified residue of the degree i—». Hence
» is not greater than i—n or (m—1i)(i—n) is not greater than i—n, i. e. m—i cannot
be greater than 1, 4. e. ¢ when intermediate between m and n cannot be less than
m—1, otherwise %, , will vanish identically. Moreover, when i=m—1, #=i—n, and
i—w=n, and accordingly %, ,,,_, is not merely, as we might know, & priori an alge-
braical, but more simply a numerical multiple of ¢ for all values of v. The same is
of course true also, m being greater than =, for every form ¥, ,_,, since this is always
a conjunctive of f and ¢, of which the former is of a degree higher than the ¥ in
question, so that the multiplier of £ in this conjunctive must be zero*.

Art. (25.). To enter into a further or more detailed examination of the values
assumed by, , for the most general values of m, n, i, would be to transcend the limits
I have proposed to myself in drawing up the present memoir. What we have esta-
blished is, that to every form of 3, ;_, appertaining to a value of i between 0 and »,
there is a sort of conjugate form for which ¢ lies between m-+4-n and m; that for
i=m—1 or i=n, J, ;_, becomes a numerical multiplier of ¢; and that when ¢ lies in
the intermediate region between » and m—1, 3, ;,_, vanishes for all values of v. I
pause only for a moment to put together for the purpose of comparison the forms
corresponding to ¢ and to m+n—i. By art. (16.), making i=v-,

3-'-ZE(‘Z"—IZ%) (x—h"h) ¢ "(x_h%) X ('r—nf\) (x—nfz) "'(x—nfv)
hq; hqz"’}lq{, % hqyﬂ hqu+2"'h9m
X N, Ny + g, Ttyir Niyyors- g,
{:h% h"lz "'h‘lv ] % [7751 ”§2 "'”fv_i.
h?v—i‘l }1’%+2""th 77£v+1 n§v+2"’n§n_|
The conjugate form for which ¢ =m-+4n—i and m—v n—y take the places of v and »

(m—v)(n—v) will be got by taking
0= 30y ) (@ By ) o (T Py X (@ ) (@) oo (1)

l:h{h h‘]z"’hqv:] % |;h%+l }l‘lv+2"'k7m
X Mg Mgy =<7, Mgy Meyra -+,

h']l h‘]z "'h%—] 7751 ”fz "’”fy

- JX ;

T+1"qu+2° P am Ay sy Neyyge =g,
which it will be perceived are identical, term for term, in the fractional constant
factor, and differ only in the linear functions of x, which in §; and in 9, are complemen-
tary to one another. Our proper business is only with those forms for which i<n.

Art. (26.). It will presently be seen to be necessary to ascertain the numerical rela-
tions between 3, ; and 3, , when 2<n, and this naturally brings under our notice the

* It thus appears that if the indices 7 and » do not differ by at least 3 units, & will have an actunal quanti-
tative existence for all values of ¢ between O and m+=; or in other words, the failure in the quantitative
existence of the forms 9; only begins to show itself when this difference is 3; thus if m=n+3, 3, exists, and
3,,+2 exists, but -&n+1=0.
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inquiry into the numerical relations which exist between the entire series of forms
3,,:—, for a given value of i, corresponding to all values of v between 0 and ¢ inclusive.
In order to avoid a somewhat oppressive complication of symbols, I shall take
a particular numerical example, i.e. m=7 n=6 i=4, and compare the values of
o035 N55 Yoo V15 Yy, all of which we know to be identical, [to a numerical
factor prés] with one another and with the second simplified residue to f and ¢, that
being of the fourth degree in ; our object in the subjoined investigation is to deter-
mine the numerical ratios of these several forms of ¥ to one another.
First. Let v=0 v=4. The leading coefficient &, , is
s Mg
shihs hy by by b by
75 %6
M Ny M3 Ny
which we know a. priori (it should be observed) to be essentially an infegral
function of the A and the  system. In this, the term containing #; will be evidently

75
(A) Ehl hy g hy By b h7,
75

N N2 W3 Wy

the # system to which the latter summation relates being now reduced to consist of
Muans 7,7 In this expression, again, the coefficient of # is evidently 1. Hence,
therefore, the leading coefficient in %, , contains the term #.7;.

Secondly. Let v=1 y=38. 'The leading coefficient in J, ; becomes

_771 772 773 774 775 776 ]

sLt ] X [k hy b by B |

”h2h3h4h5/56h7] [msmf'
X

h, 7y M2 W5 ]

In this, the factor affecting 7 will be

XX o | s ]
2_/11 hy hy by s he by |
_h2hah4h5h6h7] }:774775 ]

X
L_kl N7 3

76 being now understood to be eliminated out of the » system included within the
above summation. Again, in this latter sum the factor affecting 7 will be

[’71 Ny 773:| % \:774 ‘J
(B') > kl h2 h'3 h4 l15 hﬁ iL7

l:hz h3 h4 hs hﬁ h7] [:774 ]
1 R PXE)

7, and 75 being now both eliminated out of the # system. This last sum can of course
only represent a numerical quantity.

-
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So in like manner, again, if v=2 y=2, the coefficient of #}.7} will be similarly

reducible to the form
|: mn 772:] x [773 n
LAy Ay hyhyhsheh, | . 3
2 bbby ] [ mac]
hy b, X\ b b,

So, again, when v=38 v=1, the coeflicient of 7.7} will be

[—771 _J % [772 N3 7y ]
hyhy by hiohshh, | .
(D) E[m Bl T [712 wrc] 7
L by by g _| 7 J
and finally, the coeflicient of 7.7} will be
[771 Ny Ny 7y ]
. hs }l@ ]L7 .
(E) EW;' in 4
bbby by

out of all which sums it is to be remembered that 7, and; are supposed excluded
from appearing. All these several coefficients being numbers in disguise, we may
determine them by giving any values at pleasure to the terms in the A and 7 system.
Let now #,=h, n,=h, n,=h, n,=h,, then in (B.) it will readily be seen that all the
terms included within the sign of summation vanish identically, except the following,

viz.—
m %y 7 [’ N
XVl oy by by g By

/l hhhshﬁh] Ph ]
X
h, L 773

(C)

3,15

_771772774 % 73 ]
1, by oy |
_h hy hy hs h by —’X[%

_k3 i Mg 7y

EXXA 7 1
Lhy X Lhobyh by ]
["h, hy b, hy hﬁh] [ﬂz
h X
p) M3y _|

-

F-772 A3 ’74} % [ﬂl ]

| &, hs by by by b by |

’—hzhsl%ha h0h7:l l:’h T
3 X

1 fo N3 My _|

In each of these expressions the first factor of the numerator is identical in value
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(by reason of the equations h,=n», hy=17, hy=12, h,=2,) with (—)*x the second factor
of the denominator, and the second factor of the numerator with (—)°X the first
factor of the denominator; hence the coefficient of 7.7 in 3, ; is —4.

In like manner the only effective terms of 3,,, will be

_771 P % r—773 un ] N3 7y ] x M 72 1
bk ) X hhabshoh, | bk | % By by by ho |
rkl hz h5h6h7:‘ X [773774_, hhs h4 hshs }l7:l % l:’h 772—

_hs ]"4 M| __hl }1‘2 N3 ;|
771 773 r772 R ] —712 N4 r771 N3 T
| X\ bbby hohy | | kg || o b by ho s, |
hlh /l hﬁh 772774ﬁ’ ~/7'2 h4 hs hﬁ /”7 r’?x 773_
X X |
_h@ h4 L% | __hl }La L 7%, |
Ex? o | 7 T [ | ]
bk VS bbbty | Lk | bbby b, |

/LIII4/? hﬁh—] 771;74_’ T‘h;/uhskﬁfq x Ny |
L5 _| _haha L%

Any other term will necessarily contain in the numerator a factor, whose symbolical
representation will contain one of the quantities #, #, 7; z, in the upper line, and one
of the quantities A, &, A, h,, having the same subscript index in the lower line, and
which will therefore vanish; the number of effective terms being evidently the
number of ways in which four things can be combined 2 and 2 together, and the
value of each term is evidently (—)**.(—1)*°.1, so that the entire value of the
coeflicient of 7.7 in &, , is +6.

Precisely in the same manner, we shall find that the leading coefficient in 3, , will
contain the term —47#.73, the (—1) resulting from the operation (—1)"°.(—1)>*,
and in 3, , the term -}-73.7, the +1 resulting from the operation (—1)**. Hence it
appears that &, ,; &, 55 9,55 95,5 3, are to one another in the ratios of 1; —4;
6; —4; 1; and so in general for any values of m, n, ¢ (¢ being less than m and less
than ») it will be found that

So,iz' Sl,i—l! 32,1‘—23 -*-Si,o
will be in the ratios of the numbers
R G e O G e i R G L)

Art. (27.). The method employed in the preceding investigation will enable us to
affix the proper sign and numerical factor to %, ; or 3, or in general to 9, ,_,, in
order that it may represent the Bezoutian secondary of the degree ¢ in 2. [This
latter has been already identified with the simplified residue obtained by expanding
pz
Jz
sufficient to compare a single term of any such & with the corresponding one in the
Symmorphic Bezoutian secondary. Let us first suppose that m=n, f and ¢ being of

MDCCCLIIT. 3N

under the form of an improper continued fraction.] For this purpose, it will be
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the same degree. - A glance at the form of the Bezoutian square will show that if we
form the Bezoutian secondary of the degree (n—:) in 2, the coefficient of its leading

term will contain the term (—)%5 (0, i)'; (0,7) as usual denoting the product of the
coefficient of ¢” in f by the coefficient of "~ in @, less the product of the coefficient
of 2" in ¢ by that of 2"~ in f; and as we suppose the first coefficients in f and ¢ to
be each 1, if we term the other coefficients last spoken of a; and «; respectively, this
said coefficient of the leading term of the ith Bezoutian secondary will contain the
term (—)("'”éi(a,;—ooi)i, and consequently (— l)("‘l)éi.oc:? and'(—-)"%‘a:ﬁ.

Now by the like reasoning as that employed in the preceding article, the coefficient
of the leading term in 3,,_; , ¢. e.

[h% h%' ° 'hqi

B B B AR
2(x—h,, )(x huys) oo (¥ hqm)rhq, h,, '“ﬂqi]

l_}l‘h"+l hqi+2" 'h‘Im

will contain the quantity 3(h,.h,.h,...)', and therefore will contain a term

(S(hy. by hge. )}y i €. (—)¥ai, which is equal to (—)'a, since (i—1)i is always even.

Hence Sm_i,oz(—)i'i;—lx the corresponding Bezoutian secondary.

Art. (28.). The above applies to the case where we have supposed m=n. When
this equality does not exist we may proceed as follows. Prefix to ¢(x), the first coeffi-
cient of which is still supposed to be 1, a term ¢—a™, where ¢ is positive and indefi-
nitely small, and let ¢z so augmented be called ®(x). Then if kk,...%, are the roots

IN\w=%
&

of o, k.k,...k,, together with the (m—n) values of( , will be the roots of ®(z).

But it has already been proved that when (as here supposed) the first coefficient
of fx is 1, the Bezoutian secondaries to_ fand ¢ will be identical with those to f'and @
respectively ; at least it has been proved that these latter, when ¢=0, but the form of
® is preserved, become identical with the former, and consequently the same is true
when ¢ is taken indefinitely small. Now if we call the (m—n) roots of ® which do

not belong to @, 7,.1, 7,49...%,, and make
hy by, by,
771 ’72 "'”m J

I:hql h,, .../lqijl’

h‘qz+1 h‘lz‘+2“'k4m
by by, by,
M Ny ooty

[hql /l'qz "‘hqijl.
hqi+1 hqi+2"’h4m

Yo o= 2@ =l ) (@ =gy, ) o (@ —Py,).

hy h, ..h,
we have ¥, _, ,=2P(h, A h)li o 'y q,},

Q"
”n+l nn+2 --077,"

where  P(h, hy,...h)=(x—h,, )(@—h, )...(x—h,,)
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But since k., %,.,...k, are infinite in value,

[ Ho ) = (R (=) (=) ()

L_kn+l kn+2“ °km_J
Hence ¥, = (})'zp(hql by hy)
1 7
= <;> Sm—i, 0
and Qi o=, o

But by what has been shown antecedently [taking account of the fact of the leading
coefficient of @ being ¢ in place of 1, which introduces the factor ¢], we have

£i'\Fm—i, 0= (_)(i—— l)%B;J
where B; is the Bezoutian secondary of the (m—i—1)th degree in x to f and ¢; but
B; it has been proved =B,, the Bezoutian secondary of the same degree to fand ¢;

i—1

hence §,,_; ,=(—)""7".B.

Art. (29.). If now we return to the syzygetic equation, = f—0-+3=0, 3 may be
treated as known, having in fact been completely determined as a function of the
roots, as well in its most general form, as also so as to represent the simplified residues
tof and ¢ in the preceding articles; it remains to determine the values of = and ¢
as functions of the roots corresponding to any allowable form of &, but I shall confine
the investigation to the case where ¥ is the lowest-weighted conjunctive, or which
is the same thing, a simplified residue to Zand ¢ of any given degree in x; each value

of;—r will then represent one of the convergents to %when expanded under the form

of a continued fraction. If & be of the ith degree in «, 7 is of the degree (n—i—1)
and ¢ of the degree (m—i—1). This being supposed, and calling n—i—1=y,
m—i—1=p, I say that ¢ will be represented by G and ¢ by I', where

hy hy,...h,
M My ..e?,

G=(_)i2(x—hm)(x_hqﬁ)"'(x_hq#)[h h oh,

h, . h h

qu+1 "qut2 *Vm

and 7 isan analogous form I'; A, h,...h,, as heretofore, being the roots of £, and », #,...7,
of . To fix the ideas and make the demonstration more immediately seizable, give
m and n specific values; thus let m=5, n=4, i=2, so that p=5—2—1=2. Put &
under the form 3, ,, so that & in the case before us

[h‘la h‘h hQs ]
=3(e—hy) @—h ) F 7

h‘]a h‘h /2'15 '
th qu

3 N2
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Now make x=Ah, then /=0, and & becomes

[k73 h’% hlls ]
3(hy—hy) (hy—hy) 0" e

Ik
th h’lz
[hl ] [hl hy by
. L hy b 7 N %5 My
i.e.> T b ,
by b
h, being kept constant in the above sum, but A,, h,, h,, ; being partitionable in all the

six possible ways into two groups, as into A, A, Ay, %, in the term above expressed.
This sum is evidently identical with

r hy hy b,

] lj"zhﬁ J
_ I
ELm%ngm ,i.e.[ ]x? My M5 s |

l‘h2 }13] 1 75 93 Ny T
L A s

hy b
h, h,
]
Lmmnsn, |

[hz hy ]
a7 |

Again, ¢ becomes

N
Hence t=7p- becomes

2 T h by
h, hs]

G
But when x=h,, —— becomes

(=)’

hy h,
[ h, __[mnzngnj
EANIE
Lh,hJL,—J
Chy ] [hyh

i' e. = _h2 ku,\_’h 772773774J,
h’2h3_‘

il L)

=(—1).¢

Thus when x=4%,, t=G. In like manner, when x="h,, or h,, or h,, or h;, ¢ always =G ;
but # and G are both functions of x of the same degree, and of only two dimensions
in . Hence ¢ is identical with G. So in general it may be proved, that whenever
a=h,, or h, or k... or h,, ¢t and G, which are each of only (n—1—:) dimensions in z,
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are equal. Hence universally =G, as was to be shown. To find + we must avail our-
selves of the symmorphic, or as we may better say (it being at the opposite extremity
of the scale of forms, the antimorphic), value of 3 represented by 3, ;, taking care to
preserve 3 strictly identical under both forms of representation, in point of sign as
well as quantity. That is to say, we must make
h, hy, ...h,
e

i Agi+1 5490+ n:‘
30,i=(_)t(m_i)z(a?"”qn)(x—”qz)"'(x"'”%)' bk : 5

i1 Mairas Mgy

LA Ngy eeelly

-
Agi1 Dgigae gy

-
=(=)2(x—n,)(x—2,)...(x—1,) ,
441 Ngira s Mgn
[:n‘h ”42 "'nqi‘J
where w=1(m—1i)+m(n—i),
SO tha.t (_)"’: (_)mi—i+mn—mi= (_)mn_, ;

and consequently the same reasoning as was applied to ¢ to prove =G, will serve to
show that —z=I, where

’ . [”fx nfz"'nng
- , hy hy...h,
=(=)".2(e—n)(x—n,)...(x—2,)

3
[’75, T, ---”ev]
nfv+1 n§v+2"‘”fn

or
l;hl hz...hm:l
7]5‘ 7752... 77{:’,
r=(—=)3(x—n ) (x—2n.)...(x—7
( ) ( 51)( fz) ( fy)l:”& e, ---775,,—‘,
Ny ”£v+2"'n£n‘|
where

w=mn—1—my=mn—1—m(n—i—1)
=mi—m— 1.

Art. (30.). T have not succeeded in throwing ¢ and = under any other than the
single forms for each above given, and it is remarkable that whilst apparently ¢ and
7 admit only of this single representation, ¥ admits of the variety of forms included
under the general symbol 9, ,_, for a given value of ; and it ought to be remarked
that these forms (although the most perfectly symmetrical and exactly balanced
representations) [and for that reason possibly the most commodious for the ascer-
tainment of the allotrious factor belonging to them respectively] by no means exhaust
the almost infinite variety of modes by which the simplified residues, ¢. e. the hekisto-
barytic, or if we like so to call them, the prime conjunctives, admit of being represented
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as functions of the roots of the given functions; but if in art. (16.), instead of writing

[ hy hy...h, J
R= N, Ny oeelg,
qul h,, .../zrqv:l o [775‘ 7, ...;7&]’
l_h'%+1 hqu+2"‘kqm Ny Neyyge gy,
we had made
R= P(h’ql h’qu . 'h’q,, 5 Ne Ngyee .775,/)

[iqu h, hﬂ [% T, o, ]
hqu+1hQu+2"‘hqm_J X Neyar Mty e -
where P represents any function symmetrical in respect of A, &,...4, , and also in
respect of 7, 7 ...n,, (the interchanges, that is to say, between one % and another 4,
or between one 7 and another 5, leaving P unaltered), it might be shown that the
value of 3, , resulting from the introduction of this more general value of R would
(as for the particular value assumed) always be expressible as an integral function of
the roots, and consequently, if P be taken of the same dimensions in the roots as the
numerator of R previously assumed, <. e. v, 3, , would continue to be (unless indeed
it vanish) identical (to some numerical factor prés) with the corresponding simplified
residue. If, on the other hand, P be taken of less than v» dimensions in 4 and £,
we know a priori that &, , must vanish, as otherwise we should have a conjunctive of
a weight less than the minimum weight. When P is of the proper amount of weight
w, it is I think probable that another condition as to the distribution of the weight
will be found to be necessary in order that 3, , may not vanish, viz. that the highest
power of any single (A) in P shall not exceed v, nor the highest power of any single #
exceed ». But as I bave not had leisure to enter upon the ingniry, the verification or
disproval of this supposed law, and more generally the evolution of the allotrious
numerical factor introduced into J, , by assigning any particular form to (P) satisfying
the necessary conditions of amount and distribution of weight, must be reserved,
amongst other points connected with the theory of the remarkable forms (19.) art. (15.),
as a subject for future investigation.

Art. (31.). A property of continued fractions, which, if known, I have not met
with in any treatise on the subject (but which has been already cursorily alluded to
in these pages), gives rise to a remarkable property of reciprocity connecting = and #
severally with & in the syzygetic equation 7f—#p+3=0.

Let the successive convergents to the ordinary continued fraction

1 1 1 1 1
Gt Gt Gt et @

be called
LoL b g

my? ;n—e...mi*l nTz
respectively, it is well known that
m;_y. [;—m, li—1=(—)i—l-1 H
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but I believe that it has not been observed that this is only the extreme cases of a
much more general equation, viz.
=il = (=) %,

m;_,

where ,, s, ... 4; denote respectively the denominators to the convergents to the
continued fractions formed with the quotients taken in a reverse order, i. e. the con-

tinued fraction
1 1 1 1 1

G+ Gt 95—2+"'+(7;I 7

This is easily proved when ¢=1; w, is of course (as usual) to be considered 1. So
more simply for the improper continued fraction,

L 11 11

mo = o= gin— ¢
of which the convergents are supposed to be
h b

l;
m, My Tmi—,  my’
and the reverse fraction

1 1 1 1

G— G — @

of which the convergents are supposed to be
oA A

A g

we have the more simple equation
Liom,_—1_,.m~+p, ,=0.

And it is well known, or at all events easily demonstrable, that

_ 1 1 U1
L 7= ioa— i’ q
m, 1 111 1

m T gi—  Ga— Qi G o

Art. (32.). If now we use subscript indices to denote the degree in x of the quan-
tities to which they are affixed, we have the general syzvgetic equation
KTm—i—-lfm_I{tm—i—l'¢n+KSi=O) »

where K, a constant (which I have given the means of determining in the first
section), being rightly assumed K.z,_;_,, K«,_;,_,, become the numerator and deno-

minator respectively of one of the convergents to%, expressed as an improper continued

m—1

fraction, and K&, becomes the denominator to one of the convergents to 7 or

* See London and Edinburgh Philosophical Magazine, “ On a Fundamental Theorem in the Theory of
Continued Fractions,” October, 1853.
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n—1
t P *,  Conversely, it is obvious that if we adopt as our

which is the same thing, to

primitive functions ¢f(m) and ¢,_,, (¢) being the value of K when ¢=0, we shall
obtain as the general form of our syzygetic equation, bearing in mind that (m—1)
now replaces (n),

c. K@) i fm—KS,__it,_,+K'7,=0;
and similarly, if we adopt as our primitive functions «,_, and c¢,, we obtain for our
general syzygetic equation, observing that (n—1) now replaces (m),

K ic1 o — KLY, 10,4+ K7 =0,
so that (making abstraction cf the constant factors and looking merely to the forms
of the several functions which enter into the equations) we see that on the first
hypothesis, viz. of #,_, being substituted for ¢,, the conjunctives of each degree in x
change places with the second conjunctive factors, 7. e. the original multipliers of ¢
of the same degree in x, and vice versd; and in the second hypothesis, where 7,_,
takes the place of fm, the conjunctives of each degree in x change places with the
first conjunctive factors, i. e. the original multipliers of f of the same degree in x, and
vice versd; t,_, and 7,_, being respectively multipliers of ¢ and f, such that the
difference of the respective products is independent of @. These results ought to be
capable of being verified by aid of our general formule for ¢, #, 3, and as this verifi-
cation will serve to exhibit in a clearer light the nature of the reciprocity between
the conjunctives and the conjunctive factors, it may be not uninteresting to set it
out.

Art. (33.). As usual, let &, A,...h, be the roots of f(x), and #, #,...,_, the roots of
o(x), the last conjunctive factor to ¢, which is of the degree (m—1) in @, will be
represented, neglecting powers of (—), by ¢,_,, where

Ch, hy,...h

@Rt dm—1
Lnl f, iy, J
Ly

hy, by by,

If now we for greater simplicity make ¢,_,=#(x), and call the roots of ¢, 7/, #,...7,_,
any such quantity as

tm—l= 2(‘%’— h%) (m_h‘h> cee (‘r—- h‘lm——])

h, ] o(h,)-0h,)...0(h, )
" =t(h,,)=(h,, —h,) (b, —h,)...(h, —h,, )X- e fm)
[77'1 7772".77!”‘*1‘! ( ¢ (%, 1)( g q) 7 q (hqm—lqu)(hqm—h%)...(h —h

=¢(h,)phy) .. 0(hy,_,)

* Since ¢ is always supposed less than # (z being the degree of the lower degreed of the two functions / and @),

the fact of the last quotient to t—"},;' being wanting to T—’;llw will not affect the accuracy of the statement in

the text above, since this latter will contain as many quotients as can in any case be required for expressing 9,.

qm Um—1
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R denoting a constant independent of the root %, selected (and which constant is in
fact the resultant of the two functions f'(z) and ¢(x)), that is to say,

o(h)e(h)e(h)...o(h,).

But by our general formulee (8.) the simplified residue to f(x) and #(z) of the
ith degree in x will be represented by

l: 2i+1 41+2 h ]]
S,iy0=2(x_hql)(x-—h'12) (z— kq,) KB &9

[ k]
l- QL+1 ‘h+2 thJ

S, =3 (@) @By e (@— ) ¢ [R~i, Plais) P Psy) oo @)
[}qu th '“hﬁ ]
h’%+1 k‘li+2 h 9m
= R=13 (b, ) (1=, o (0 By ) PP) L) -0 ()

[Py oo ]

L hQH—l 2i+2° h'q

. | J— —f—
o1 Y, =R""-¢,

the relation which was to be obtained. So conversely, in precisely the same manner,
calling #; the conjunctive factor of the degree ¢ in x to #(x) in the syzygetic equation,
which connects f(z) and #(x) with a corresponding simplified residue, we have

th h‘h h
a1, n'm_,
[h h by, ]
h4i+l h9i+2"'}l’1m
=R (e b, ) (@ = hy) () PPtis PPl
[llm h‘h "'h‘li }
hqi+1 h4i+2"‘h4m
the conjugate equation to the one previously obtained*.

And evidently the same reasoning serves to establish the reciprocity, or rather
reciprocal convertibility, between the & series and the = series, when in lieu of the
original primitives f(x) and ¢(x) we take as our primitives 7(«) and ¢(z), =(z) being
the function which satisfies the equation

7(x) fr—t(x)px+R=0.
Art. (34.). It may be remarked that if n=m—1 (the last syzygetic equation being

t=2(x—h,)(@—h,)...(2—h,)

=R"L.Y,

* M. Hermrrs, by a peculiar method, first discovered one of these two conjugate relations of reciprocity,

applicable to the case of Sturm’s theorem, where pz=f'z, and I am indebted to him for bringing the subject
under my notice.

MDCCCLIII, 30
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thus ¢,_,.0,-,—Tm_a-fut+=0), when ¢,_, and f,, are taken as the primitives, the
corresponding equation will be of the form

t'm—l 'tm—l —‘r'm—2fm+slo=0 H

these two equations must therefore be identical, and consequently #,,_,=¢,._, (to a
numerical factor prés), so that £,_, and ¢,,_, are reciprocal forms; this is also obvious
from the consideration that #,,_, must, by the general law of reciprocity (established
above), be a residue to (f,, ¢._.), which the latter function itself may be considered
to be. 'Or the same thing is obvious directly, by writing

t,,,_1=t(x)=2(w—hql)(w-—hh)...(w—hqm__l).(hq _z(f)a(,}zqs(fzﬂ--)-qv(hg_,)_ —
m 0©/\""m 2/ \"m Im—1

and then making

t’m—-l:E(m_h%)(m_kh)”'(x—th—l) @ _hl()(q]ll)t(_q% )t(h(q}lm—ﬂk T
q 1/ \""m q2/ ***\"m Im—1

= 2 (.Z'— k?l) (JJ - h‘lz) b (m— th— 1) (¢ (hq‘) . ¢ (th)'A' ° ¢k?m—l . bﬂm)’

where
A= (=) (h—hg)? . (o) (ly—h)?

X (hz—hs)z"- (h‘z_km)z
X (hm—l—hm)2
:(—1)”"%—l D (D being the Discriminant, more commonly called the
Determinant to f) ; or finally,

m—1

R
t'm_1=1—) ¢, as was to be shown.

Section II1.

On the application of the Theorems in the preceding Section to the expression in terms
of the roots of any primitive function of STurM's auxiliary functions, and the other
JSunctions which connect these with the primitive function and its first differential
derivative.

Art. (35.). The formule in the preceding Section had reference to the case of two
absolutely independent functions and their respective systems of roots: when the
functions become so related that the roots of the one system become explicitly or
implicitly functions of the roots of the other system, the formulse will become
expressible in terms of these latter alone, and in some cases the terms (of which the
sum is always essentially integral) will become separately and individually represent-
able under an integral form. Such, as I shall proceed to show, is the case for two
functions, of which one is the differential derivative of the other. When f and ¢ are
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thus related, so that ¢p= dﬁ, calling as before A, h,...h,, the roots of f, and #, #,..

the roots of ¢, we shall have in general

h
[: i+1 ) :l =(hqi+1_’7l)(h’qi_”2)"'(h4i+1_nm'l)

My Myeee
h

=f’hq-+l=[ i ]=[hqi+, ) x|:hm,
|y by ooy hqlk%...kq’.J S

9e+2 "T9i+3°"

l:h‘h+l } i k4i+2 } x &c. X [:IZQM ]
MAgeeellp __771 Noeselm—y N Hgeeellyy
[h%-ﬂ :I hlléli’i-l jl
h _hqiﬂ }I’Qi+3" 'th-—l

~]L4i+2 ] I:}L41+2 }
X X

__h%h’%”'hqi kéh+l hlh+3 h‘lm—l

X [}L‘Im j\ X thm }

. h?lk%"'hﬁ '__k‘h'+l h?i+2"'kq'm-—l )

hqi+1 hqs+2' "th
Mty cellmor |

Consequently

}th'l-l h4i+2
7 ) eolp—

Hence
¢ [hqiﬂ hqz‘+2"'hm‘]
k(h th b 'h"h' ;|
h(h'+l jl [h4i+2 ] {hm :{
X ) G X
[hqiw hqs+3"'l"1m h‘h‘ k‘h’+l A h‘lm kq: hqz' "h'lm—l

= (= )T 0. By e By

457

Am—1

]

the Z denoting the operation of taking the product of the squares of the differences
of the quantities which this symbol governs. Hence the Bezoutian secondary to

fand f' of the (m—i—1)th degree in z, viz.—

kl]lqu'"k%’ )
M g eeellyy

(— ) Z(m kqm)(.r—lzqm)...(w——hqm),:h - ],

soelly;

2i+1 ""i+2 am

becomes
(— )sa-n . Z(hfh hq’. "hqi)z(x— hqwl) (m— hqi+2) oo (=~ }l )

—c(h‘h hﬂa k‘li)z(x h4c+l)(x h!h+2 (w h )’
302
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since (—)“Y=1, which gives the well-known formulee (enunciated by me in the
London and Edinburgh Philosophical Magazine for 1839) for expressing M. STurm’s
auxiliary functions in terms of the roots of the primitive, and which I therein stated
were immediately deducible from the general formulae (also enunciated in the same
paper) applicable to any two functions. These more general formula appear to have
completely escaped the notice of M. Strurm and others, who have used the special
formulee applicable to the case of one function becoming the first differential deri-

vative of the other.
Art. (36.). In precisely the same manner, if we form as usual the ordinary syzygetic

equation

t.flea—afr+4+3=0,
we may find the different values of # given by the complementary formule; and
using £ to denote the multiplier of the degree i in x, i. e. appertaining to the residue
of the degree (m—i—1) in x, we have

l:hq’ hy...h, jl
Ny Ay eellp—y
ti_ 2 7 hﬂx h’Qz b
hQH-l h92+2 h Im
—'g(}'m by,e qi) (‘T'" th)(x_th) "‘(w—h’qi)'

Art. (37.). Thus, if we make i=m—1,
-f.l(m) t —1_Z(h']| q2° qm—l)(m—h%)(x_h%)"'(‘Z'_k'lm-—l)'

It is evident from the form of f.x that it possesses relative to fr, the same pro-
perty as fz, I mean the property that when x is indefinitely near to a real root of

‘;‘ hkej;S ) will

pass from being negative to being positive, or in other words, fiz and f'r have
always the same sign in the immediate vicinity to a real root of fr. Hence it fol-
lows that £(z) might be used instead of f'z, to produce, by the Sturmian process of
common measure, a series of auxiliary functions, which with fx and f/.x would form
a rhizoristic series, 7. e. a series for determining (as in the manner of M. Sturm’s
ordinary auxiliaries) the number of real roots of fx comprised within given limits.
The rhizoristic series generated by this process will, it is easily seen, be (to a con-
stant factor prés) the denominators (reckoning 41 as the denominator in the zero

(7' hql)(x h) ('r—hq.)

JSx, and is passing from the inferior to the superior side of such root,

!
. 4 . .
place) of the successive convergents to To thrown under the form of a continued frac-
1 11

1
tion — ——... ; M. Sturm’s own rhizoristic series, on the contraly (will
h— L~ G Qn

be to a constant factor prés), the denommators of the convergents to the inverse

1 .
fractlonf‘ ~—~, which will be of the form K. -:_—_ q,,_l,-—'"q_;: o accordingly these two
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rhizoristic series will be equivalent as regards the number of changes and of combina-
tions of sign (afforded byeach) corresponding to any given value of , of which of course
~the ¢’s are linear functions. This result agrees with what has been demonstrated by
me by a more general method (in the London and Edinburgh Philosophical Magazine,
June and July 1853), where it has been proved, by means of a very simple theorem of
determinants, that the two series

l __1_ 1 1 1 _1_ . 1 1 1 1

0" = Q= G— fo— g5’ h— 92— gs qn
and ,

i‘ 1 1_ . 1 1 1 . 1 1 1 1

qn 4 Gn— Qn—1 ? gn— Qn—-1 Gn—2 ’ Qn— Qn-1— Gn—2 q

always contain (for real values of ¢, ¢, ¢s...q,) the same number of positive and
negative signs.

Art. (38.). Having now determined the general values of & and ¢ in the equation
tf"(x) —7fr+3=0 as explicit integral functions of the roots of fx, the more difficult
task remains to assign to = its value similarly expressed. This cannot readily be
effected by means of substitutions in the general formulee, the method we adopted for
finding ¢ and & ; but all the other quantities except 7 in the syzyzetic equation being
integral functions of the roots, it is evident that = also must be an integral function

- . ifla—3%
of the same, and to obtain it we may use the expression r= i o

To obtain the general form of = by direct calculation from this formula would
however be found to be impracticable; the mode I adopt therefore to discover the
general expression for 7 corresponding to different values of 3, is to ascertain its
value on the hypothesis of particular relations existing between the roots of fx, and
then from the particular values of 7 thus obtained to infer demonstratively its general
form, as will be seen below. The demonstration of = is unavoidably somewhat long,
7 being in fact represented by a double sum of partial symmetrical functions.

Using the subscript indices of each function as the syzygetic equation to denote its
degree in x, we have in general

bpoi Lf,‘”—"'m—i—zfx'l‘si: 0,

hy—x=k, h—a=k,......... h,—x=k,,

where if we make

so that
hi - il’w=ki— kto’

L (g, kf,z...h,,’))=§(kf,l ko, ..k,,p),
we have in effect found
Si:z(kQRk(h“'kqi)z(]{qiﬂ k4i+2“'kqm)

and therefore

and
tpia=2(k, kQZ"'ka—i—l)Z(le qu“kqm-i—x) 5

we have also f'(x)=(—)""".Zk, ky...k,,_,.



460 MR. SYLVESTER ON FORMULZ RELATING TO STURM’S THEOREM.

Let us commence with the case where =0, we have then
30=§(7f1 koo k)
tu =2k, oo by, (Y, By Koy, )
we have thus
("')m"rm—2(kl°k2"'km =—2(kq| k‘h"'k‘hn—l) X E(If«n qu ka—lg(erklh'“ka—l))+Z(k1 by k).
[It may easily be verified that the negative sign interposed between the two parts of
the right-hand member of the equation has been correctly taken, for
{(k, ky.. .k, ) contains a term k™Y k™2, K ..k,

2(k, k,...k, ) contains a term £, k, O T .

and
2k, by ik, (K, k, _) contains a term A"~ (k"7 Lk, ok,

and thus the term A3™-Y k22 ki _,.k%_,, which does not contain £, k,...%,, will (as
it ought to do) disappear from the right-hand side of the equation. ]

Now suppose
k,=k,,
then
L(k kyeo k) =0,

g( N 42 Qm 1)_

except when one or the other of the two disjunctive equations
4y G 93---qm_1=1, 3,4...m
915 92 Gse Gn1=2, 3, 4...m

and also

is satisfied (by a disjunctive equation, meaning an equation which affirms the equality
of one set of quantities with another set the same in number, each with each, but in
some unassigned order).
Hence
Sk kyoiik,, Uky by Ky, )

=2k, ky ...k L(ky ks .. k).
Hence when

hy=(=)"Fy 70 becomes T3 (k, hyorhy )Ll iy hr),
i e U, hoor k) (1 3h, By B A2 B o),

the = referring to ry, 7, ...., 7, supposed to be disjunctively equal to 3, 4, ....m.
Now 7,_, is of (m—2) dimensions in x, and whenever more than one equality
exists between the #’s, 3, and #,_, both vanish (in fact every term in each vanishes

separately), and therefore 7,,_,, which _-%7;’—"%'"—'—‘—70—, will vanish.

Hence (—)",_, must be always of the form
2g(hy, Pypr) X ¥ by by, 5 Ky,,),s
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¥ denoting some integral function of (m—2) dimensions in respect of the system of
quantities %, k,...k, . The result above obtained enables us to assign the value of

k.
W(ky, by iy )

viz. k,2(k, k, ...k, _ )+ 2k k... k.
Now'for a moment suppose, selecting (m—1) terms k,, k,, k,...%,, out of the m terms
of the % series, that
Qb by koo ke k) =Er2—E23.8, (0 0500 1) K3 4So (2, 750 71,,)
+ &e. Fk, S, _s(k, by k) 228, o(ky k.. E),
where S, means that the quantities which it governs are to be simply added together,
S, denotes that their binary, S, that their ternary, and in general S, that their r-ary
products are to be added together.
When k,=#k,,  becomes
T2 — k(S Feae Fe) ) ET=0 (e Sy (s By B +SalB e )
o=, (e, Sy B ) Sy o B & Tl (B S oy o) 8o . Ky

28, (ks by k),
which evidently equals
+1{2S, _o(ks byeo b))+ F, Spus(Bs By K 3
i.e. H{k 2k, k. ...k, _)+2k k.. k)
Hence when k,=k,, ¥=0, and
(=) Tpog=2L( Py by by, )X (ke Ry Ky, Ky ) 5
and so in like manner, when £, is equal to any one of the (m—1) quantities k,, 4,...%,,
the form of 7,_, above written will have been correctly assumed. Bat 7,_, may be
treated as a function of (m—2) dimensions in %,, and consequently any form of
(m—2) dimensions in k,, which fits it for (m—1) different values of %,, must be its
general form, and accordingly we have universally,
(=)"Tnea=2(ly, hyu .y, ) X { (2=, )" 2 — (=, \"°S,(w— by, ®—hyy...0~h, )
+(x—h,, )" *Sy(x—hy, x—hy. .. x—h, )+ &e.

Im=1

)28 _(z—h,, x—h,..c—h,, )}

when k,=#k,,

Im—1

F(x—nh,,)S,s(x—ly, x—hy...2—h

I9m—1

Art. (39.). With a view to better paving our way to the general form of 7 for all
values of ¢, let us pass over the case of i=1 and go at once to the equation

tos S 2= Jr+3,=0;
and to better fix our ideas let m=7, so that the equation becomes
t.flo—z,. fr49,=0;
we have then, preserving the same relation as before [i. e. using % to denote any root
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of f, and % to denote h—x], the equation
Ak, by by by By boo piry =3k, K, (R By By By )

24779

_E(kql qu qu qu kq;—. k‘ls) X 2{ (km qu kqa kq4)g(kq1 qu k‘la kq4)} 5
and 7, will vanish whenever more than three relations of equality exist between the
k’s, for then each term in both of the two sums in the right-hand member of the
equation above written will separately vanish; and of course three relations of
equality between the same are sufficient to make all the terms in the first of these
sums vanish. This relationship between the different &’s corresponding to a multipli-
city 3 may arise in different ways; the multiplicity 3 may be divided into 3 units
corresponding to 3 pairs of equal roots, or into 2 and 1 corresponding one set of 3
equal roots, and a second set of 2 equal roots, or may be taken “en bloc,” which
corresponds to the case of one set of 4 equal roots. I shall make the first of these
suppositions, which will sufficiently well answer our purpose in the case before us.

Thus I shall suppose b=k, k,=Fk Fki=Fk,
then, as above remarked, (k, k, k, k, k,) =0 for all values of ¢, ¢, ¢ ¢5 ¢,, and therefore
Ekq. szZ(k% k44 st k% k%) =0 5
also 2k, k, k, k, k, k, becomes
by by by (By ey bey 428, k) kg By + Iy ),
and ¢(n, 7, %,,7,) vanishes, except for the cases where ¢, ¢, ¢, ¢, represent respectively,
¢, the index 1 or 4, ¢, the index 2 or 5, g, the index 3 or 6, and ¢, the index 7.
Hence Sk, k, b, k,L(ky by by, R ) =20k, By ko B (Key By e ),

e T T 92 " 793 44

and consequently 7, becomes
8Lk ko ey k) X (B By By -2k, (By By By By R By) )
Hence we are able to predict that the general expression for our 7 in the case before
us will be
(kg ke Rg) — (g R+ ) (e - By - ey K, )
ro=F2{{(k, kb k) X (kAR ARy (g Byt Ry By - Ey Ry ARy B R R R L
—4a(k, ko kA E, Ky R AR R R AR R R, J

For in the first place, the fact that the = vanishes when more than three relations
of equality exist between the %’s, proves that we may assume 7, of the form

S{l(ky ke by k) X ok, Ky Ry By s Ky Ry R

9 "9 T T 2 94"

the semicolon (;) separating the A’s into two groups, in respect of each of which
severally ¢ is a symmetrical form. But if in the expression last above written for 7,
we make b=k, k,=Fk, Fk,=Uk,

it becomes

(R4 F+K5) — (B + o+ F3) (b F+- Ry )
T8k ko k)| A (ki bbb (b, Rk b byl ey T ey By ey ) L
— Ak kg kgt By By By v B ey BBy By B
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Now in general if

s,=a\+a+ai+ ... +d,

and
S,=2¥(a,.a,.q,...a,),
0,—a,_,S,46,_,S,+...4+rS,=0.

Consequently the sum of the terms constituting the second factor in the above
expression

=(3—4)k,.ky ks (2—4) e, (b, ley - Ky Beg -1y ).
Hence the above expression becomes
+8L(k kb k) () Ky Fes -2k, BBy B+ Fes Bo)E )

Thus, then, whenever %, k, &, are respectively equal to any three of the quantities
k, k, ks k,, which may take place in twenty-four different ways {twenty-four being the
number of permutations of four things}, our =, will have been correctly assumed ; but
Lk, k, K, k,) being replaceable by {(h, h, bk, k,), the 7, may be treated as a cubic
function in k,, k,, k,, and arranged according to the powers of £, £, %, will contain
only twenty terms; hence, since the assumed formn is verified for more than twenty,
i. e. for twenty-four values of h,, Ay, ks, it follows that the assumed form is universally
identical with the form of 7, which was to be determined.

Art. (40.). Now, again, in order to facilitate the conception of the general proof,
let us suppose fx to be of only five dimensions in z, 7 still remaining 3: it will no
longer be possible when we suppose a multiplicity three to prevail among the roots,
to conceive this multiplicity to be distributed into three parts, for that would require
the existence of three pairs of roots, there being only five. But we may, if we please,
make h,=h,=h,, and k,=h,, or else k,=h,=k,==h,, or in any other mode conceive the
multiplicity to be divided into two parts, 2 and 1 respectively, or to be taken collectively
“en bloc.” As a mode of proceeding the more remote from that last employed, I
shall choose the latter supposition. ‘Then we obtain (+ now becoming 7,_,_,, ¢. e. 7,)

By by By By Beyomo = Sk, Ky b, B X (3K, R, (R, ),

92 "9 "
and Z(k, k,) will vanish, except in the case where ¢, represent the indices 1 or 2 or 3
or 4, and ¢, the index 5 ; also
Ek‘h kq'.! k‘h k‘h= k:h+ 41{? N k5’
Hence our equation becomes

et kyor= (4408 k)R, kZ (e By),

; — AL (k, kes) (ke +4ky).
If, now, we assume for the general value of = in the case before us
v=23(k,, k) { (hy+kp+k,)—4(k, 44,1
when k,=k,=k,=k,, + becomes
+a(k, k) (3k,— (4k,+ ),
i.e. 4Lk, ky)(k,+4k,).

MDCCCLIII. 3p

and 7 becomes
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Hence then for the two systems of values of A, &, ks, viz.

h,=h, h,=h;

h,=h, or h,=h,

hy=h, hy=hs,
the form of = will have been correctly assumed. But since the derived form is a
linear function of A, &, h,, this is not enough to identify the assumed with the
general form, since for such verification four systems of values must be taken, four
being the number of terms in a function of three variables of the first degree. If,
however, we had adopted a separation of the multiplicity three into two parts, and
had started with supposing k,=k,=k, k,=Fk,, we should have found that + would
have become

=6y(k,, ks)(2k,43E,).
Moreover, when these equalities subsist,
by by by kobbey by by kgt by by ot be By By o-Re, By B

becomes 2k} k,+3k2. k2, and the common factor %7.%, disappears in the course of the
operations for finding 7, and eventually we have to show (in order to support the
universality of the previously assumed form for 7) that

Ay, 10, — 4 (1, +1,)
becomes — 27, — 37, when

N, =Ny, =N, =
and

Ng, = Nq, == s
which is evidently true. Hence then = will bave been correctly assumed for the
following cases,

ky=ky—k=F,
k=k=k=Fk,;

and also for the cases
ky=k,=k, and Fk, -k‘,w
ky=k,=Fk, and k,=*#,
k,=k, =k, and k,=Fk,

k=k,=k, and k,=Fk,

ky=k,=Fk, and k,=Fk,},

k,=k.,=Fk, and k,=F,
i. e. for eight cases in all, whereas four only would have sufficed. Hence, “ ex abun-
dantid demonstrationis,” the form assumed for =, is in the case before us the general
form.

Art. (41.). We may now easily write down the general form which ¢ assumes for
all values of ¢ and prove its correctness. If the roots be A, 2, k;...4,, and

tm—l'— If,‘r - 7'7IL—-t'—2./:1:'4_Sz’= O)
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we shall have
4t _s [ Lhg gy by by, ) X [Oics—Cmiog S1 0o S, &eC. 1
— Mg

L =)0 Sniat (=) 00+ 1)S0ica] i
where o, denotes in general the sum of the rth powers of the (i41) quantities

(x=bh,, ), (@=h,, .. ) - (2=h,,),
and S, denotes in general the sum of the products of the complementary (m—i—1)
quantities

(x—hql), (2=hy)...(x—
combined, » and r together. It will of course also be understood that s,=:i1, so
that 6,4 1=:42.

Art. (42.). To prove the correctness of this general determination of the form of
Tm-i-1» 1€t US suppose in general that ¢4 1 relations of equality spring up between the
(m) quantities k,, k,, ...k,, we shall then easily obtain (N representing a certain nume-
rical multiplier)

qm—i—l)

k‘h

Qm—

]‘I‘-m-—v- 1

m—i—1

k
+Q=NY(k by ki) kmz .

ky, ky...k,_;_, being what the (k) system becomes when repetitions are excluded, and

being respectively supposed to occur w,, o, ... ,_;_, times respectively, so that
{"’1+F‘2+ ceot i =m

the fractional part of the right-hand member of the equation immediately above

written will be readily seen to be equivalent to

E(l'em—i—lckﬁ'koz'"kom-—i—2)'
To establish the correctness of the assumed form, we must be able, as in the parti-
cular cases previously selected, to prove two things; the one, and the more difficult

thing to be proved is, that when the series of distinct quantities k,, k., k,...%,, become
converted into w, groups of k,; w, groups of k,...w,_;_, groups of k,_,_,, then that

Sy, (ko o, Fo, Ko, ;)

24 ko, Ife2 koa---kom_;_,zin—e—x(ﬁ'o)a

or in other terms,

becomes identical with
Omica™Omoi—sS T &C. +(00+1)S,_i s
The other step to be made, and with which I shall commence, consists in showing that
the number of terms in the expression last above written, considered as a function of
(m—i—2)th degree of (¢4 1) variables, is never greater than the entire number of
ways in which (2+41) quantities out of m quantities may be equated to the remaining
(m—i—1) quantities, viz. each of the first set respectively to all the same, or all dif-
ferent, or some the same and some different ; in short, in any manner each of the i41
quantities with some one or another (without restriction against repetitions) of the
m—i—1 remaining quantities. This latter number being in fact the number of ways
in which (m—i— 1) quantities may be combined (:+41) together with vepetitions
3p2
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admissible by a well-known arithmetical theorem is (m—:i—1)"*', and the first number

. GHDE+2) . n—2 ' , :
I8 Yo m—i—g) which is always less than the other. It remains then only to

prove the remaining step of the demonstration*.
Art. (43.). To fix the ideas let m=10, =5, and consider the expression

(ks s+l s+ kg4 ko) — (b5 K+ o+ s+ g+ bt (b + ko o+,
+ (ks kot by - Eot kot Fero) (B Koo+ By s+ Ry B Ky By Ko KoKy B,
"‘7("1 k2 k3+k1 k2+k4+k1-ka'k4+k2-ka-k4)-

Now suppose the six quantities k&, ks, k,, ks, ko, k,, to become respectively equal each to
some one or another of the four quantities k,, k,, k,, k,, as for instance, I shall suppose

ky =ky=k,=k,
ky =ky=F,
ko=k,
Then =4, w,=3, w,=2, w,=1,

and the formula of art. (41) becomes
Bk -2k KS) — (3 +-2k3 4 K3) (k- Fot- Ko+ F))

4 (3,4 2ky k) (B Feg - Fey T BB Ay ey Ry e By R
—7 (ke dey ey By By R ey By By ey ) "
=3{(B—K. (gt Fs bk +Fy (b eyt Iy by leg e+ Koy By ey )
2B =K. (kA kot F k) ko (B Ry e ko By Beb- ey e+ Fey - B)
+ (R — (kA eyt ko) ey (B, ey B R ey Koo ey e F By k)
— (ke ke ke b e e By By B Ry R By}
=—k ky ky—2k k, k,—3k, ks ke,—4k, ke, k,

=—k k ks k, {%+,;€-:—:+%:+%}

In the above investigation the quantities which with their repetitions make up
the k’s system, are k,, k,, ks, k;, appearing respectively 1, 2, 3, 4 times, that is to say
repeated 0, 1,2, 3 times ; 7 is 1 more than the sum of the repetitions 041-+42-+3, and
the numbers 1, 2, 3, 4 arise from subtracting from 7 the sums 1+24-3; 04243
0+41+43; 041+42; respectively, so that the remainders 1, 2, 3, 4 denote respectively
one more than the number of repetitions of k,, ki, ks, ks, i. e. are the number of appear-

* If this first step of the demonstration appear unsatisfactory or subject to doubt, it may be dispensed with,
and the result obtained in the succeeding article (the demonstration of which is wholly unexceptionable) being
assumed, it may be proved that the formula there obtained on a particular hypothesis must be universally true,.
in precisely the same way and by aid of the same Lemma in and by aid of which the formula obtained in the

Supplement to this section for the simplified quotients to:;;f upon a like particular hypothesis is shown to be

of universal application, i. e. by showing that otherwise a function of 2{—1 variables would contain a function
of 2i variables as a factor. ’
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ances of k,, k,, k,, k5 ; and thus with a slight degree of attention to the preceding pro-
cess the reader may easily satisfy himself that the preceding demonstration (although
not so expressed) is in essence universal, and the form of = as an explicit function of
x and of the roots of f{«) is thus completely established for all values of m and of i.

Supplement to Section III.

On the Quotients resulting from the process of continuous division ordinarily applied
to two Algebraical Functions in order to determine their greatest Common Measure.

[Received October 20, 1853.]

Art. (a.)* We have now succeeded in exhibiting the forms of the numerators and

denominators ofj—;éiE developed into a contimied fraction in terms of the differences of
the roots and factors of fx. It remains to exhibit the quotients themselves of this
continued fraction under a similar form.

Lemma.—An equation being supposed of an arbitrary degree n, there exists no
JSunction of n and of less than 2i of the coefficients+-, which vanishes for all values of n
whenever the n roots reduce in any manner to i distinct groups of equal roots ; or in
other words, any function of n and the first 2i—1 coefficients of an equation of the nth
degree, which vanishes for all values of 1 in every case where the roots retain only i
distinct names, must be identically zero.

To render the statement of the proof more simple, let ¢ be taken equal to 3. And
let the roots be supposed to reduce to p roots a, g roots b, and » roots c.. And let s,
in general denote the sum of the rth powers of the roots. Then we have evidently

p tq +r =s
pa +qb +rc =s,
]oaﬁ-l--'qb2+rc2=s2
pa*+qb’4rci=s,
pa+qbtFret=s,,
&e. &e., ad infinitum.

Eliminating p, ¢, r between the first, second, third and fourth equations, we obtain

1 1 1 s
a b ¢ s|_ 0
@ B o sl
@ b ¢ o

* The articles in this and subsequent sections to which Latin or Greek letters are prefixed, although
in strict connexion with the context, are supplementary in the sense of having been supplied since the date
when the paper was presented for reading to the Royal Society. All the articles marked with numbers (from
1 to 72), and the Introduction, appeared in the memoir as originally presented to the Society, June 16, 1853,

+ In the proposition thus enunciated the coefficient of the highest power of # is supposed to be a numerical
quantity.
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In like manner eliminating ap, bq, cr between the second, third, fourth and fifth
equations, we have

1 1 1
a b ¢ s,
a b s, =0;
a@ b ¢ s,

and so in general we have for all values of e,
1 1 1 s,
a b c s, 0
@ B oA s,
a b s,

whence it may immediately be deduced, that, upon the given supposition of there
being only three groups of distinct roots, we must have the following infinite system
of coexisting equations satisfied, viz.—

sttsu+tsp+ssw=0 say L,=0
sittsu+sp+sw=0 L,=0

St Fssu+tsp+sw=0 L,=0
st s u+tsp4-sqw=0 L,=0
8¢+ s;u~+sv+s:w=0, L,=0,

&e. &e. &ec. &e.,

and conversely, when this infinite system of equations is satisfied the roots must
reduce themselves to three groups of equal roots.

Let now ¢ be any function of s, s, s, ... s,, which vanishes when this is the case.
Then ¢ must necessarily contain as a factor some derivee of the infinite system of
equations above written, <. e. some function of s, s, s,, &c., which vanishes when
these equations are satisfied ; ¢. e. some conjunctive of the quantities L, L, L, L,; but
it is obviously impossible in any such conjunctive to exclude s; from appearing, unless
by introducing some other s with an index higher than s, and consequently ¢ cannot
be merely a function of s, s, s, 85 5, 5, nor consequently of n, and the first five coeffi-
cients ; or if such, it is identically zero, and so in general any function of n, and only
2¢—1 of the coefficients, which vanishes when the roots reduce to ¢ groups of equal
roots, must be identically zero, as was to be proved.

Art. (b.) It ought to be observed that the preceding reasoning depends essentially
upon the circumstance of » being left arbitrary. If n were given the proposition would
no longer be true. In fact, on that supposition, the n roots reducing to i distinct roots
would imply the existence of n—i conditions between the % roots; and consequently
n—i independent equations would subsist between the n coeflicients, and functions
could be formed of ¢ only of the coefficients, which would satisfy the prescribed con-

dition of vanishing when the roots resolved themselves into i groups of distinct
identities.
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Art. (c.) Let D, ., be used in general to denote the determinant

) Pgeen
Sp Suer Spaz e s Srric

S, Spt1 Spra o e o Spai

. . . . . . .

ST

i gy S

ritg ¢ ‘s‘ri+i-1!
then the simplified 7th Sturmian residue R; may be expressed under the form
Dx, 2,8...¢ 1”_1—1“])2, 3,00 itl xn"—ﬂ"l‘Ds, 4., (i+2) i, ‘iDn—i, n—i—1, .., .03

which is easily identifiable with the known expression for such residue.

Now obviously the necessary and sufficient conditions in order that the n roots
may consist of only repetitions of ¢ distinct roots is, that R, shall be identically zero,
that is to say, we must have

D1,2,. =0 D>3 =0 ... Dn-—i,n——i-—l,... =0,

But the reasoning of the preceding article shows that although these equations are
necessary and sufficient, they are but a selected system of equations of an infinite
number of similar equations which subsist*, and that, in fact, whatever be the value
of (n), we may take r, ,...r; perfectly arbitrary and as great as we please, and the
equation

D,.,...,=0

must exist by virtue of the existence of the n—: equations last above written.
!
Art. (d.) I now return to the question of expressing the successive quotients of %
as functions of the differences of the roots and factors ; that they must be capable of
being so expressed is an obvious consequence of the fact, that the numerators and
denominators of the convergents have been put under that form, since if

Niee Ny N;
Dy Di) Di
are any three consecutive convergents of the continued fraction
1 1 1

o= A= a
we must have
Di-—2'Ni—Nl'——2'Di=Qi'

It would not, however, be easy to perform the multiplications indicated in the above
equation, so as to obtain Q; under its reduced form as a linear function of . I pro-
ceed therefore to find Q; constructively in the following manner.

Let R,_,, R,_,, R, be three consecutive residues, f'x counting as the residue in the

Ri_s—R;

zero place, then Q,= R2 and is of the form —m+p

* But quere whether any other sufficient system can be found of equations so few in number as this system.
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Now in general if we call the » roots of fx, where the coefficient of 2" is supposed
to be unity, A, hs...k,, and if we use Z,to denote X{(hy, h,,...h,)*, with the convention

that Z,=n, Z,=1, we have, employing (i) to denote %{(—— 1i41},

y ?_ . ?__ “'Z2i < 3
I (L ot MY SRR M B C o !
Zi_l.zi_z...Z(i)+1

R, =Zizv i Lovis (s, By hy)(@—ho,, ) (x—hy,, ) oo (2—ho )}

_Z2 )
i1+ Ldj—g e e e L5y

Roy=ZivZizselo s(op, by by )(@—ho) (@ =Py, ). (x—P0))}

2 2
Zig-Zii_seeLigyea

The part of R,_, within the sign of summation is
Z; 2" =3l Aoy ot oo, ) (R, RayenBg ) &e,
say 2, a2 ar i - &e.,
and the part of R,_, within the sign of summation is

Z,_ & —Z,_ i &e.,

i—1

and 22 2@ —Li2"_g Z,x+(Z,_,.2:—7,7;_)+ an algebraic fraction.

! .
Z,-w"‘2—Z,- i1

) 23 s Ty {z§_2.z,?_4... (im}-‘
T LTy B g iy \ L\ Ly T
X {Zi—nzix'l'(zi-q Z.—Z, Z;—-l)}
_Zi ZigZise Ty
VA A
T; denoting Z,_,.Z, x4+ (Z;_, Z;—Z,.Z_,).

Art. (e.) If the process of obtaining the successive quotients and residues be con-
sidered, it will easily be seen that each step in the process imports two new coeffi-
cients into the quotients, the first quotient containing no literal quotient in the part
multiplying « and containing the first literal coefficient in the other part, the second
quotient containing two literal coefficients in the one part and three in the other, and
in general the ith quotient containing 2¢—2 of the letters in the one part and 2i—1
of them in the other. Hence T; being made equal to L;.2+M,, L; contains 2i—2 and
M; contains 2i—1 of the literal coefficients of f.

Moreover, we have

Hence Q;

Z. of the form T?.—E——gl;%a,

where
P =2 (o, ho,-e R )y, Moy sne- 0,

P,y =3 (hy, ho,o..ro,_ )7, N, ++Toms

* ¢ it will be remembered is the symbol of the operation of taking the product of the squares of the differ-
ences of the quantities which it governs.
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and P, which is the 7th simplified residue, vanishes when the » roots in any manuner
become reduced to only ¢ distinct groups.
I proceed to show that if we make

A x4-B,=U;=A] (v—h)+A] ,(x—h,)+ ... +A] (x—h,),
where in general
A, , represents 2L (hy, ho...ho,_ ) (ho—hy)(hy—hy)...(h,— hy,_)),
then will
T,=U..
It will be observed that A, , is identical with what the simplified denominator of the

(¢—1)th convergent becomes when we write 4, in place of , and consequently, when
arranged according to the powers of %,, will be of the form

¢, b e, b2 g
where c,, ¢,, ... ¢; are functions of the coefficients, but containing no more of them
than enters into Q,_,, i. e. containing only 2:—2 of them.
Now A, is made up of terms, each consisting of some binary product of

Ciy Coy oeey C;

combined with some term of the series
Sh¥?, ShER L. 2R

and any one of this latter set of terms expressed as a function of the coefficients of fx
contains at most 2:—2 of them.

Hence only 2¢—2 of the coefficients enter into A, and in like manner only 2i—1I
of them into B,.

The number of letters, therefore, in A; and in B, is the same as in L; and in M,
viz. 20—2 and 2i—1 respectively.

Now let the roots consist of only 7 distinct groups of equal roots, so that T,

P,_
becomes =Z;.p— -
t—1

I shall show that in whatever way the equal roots are supposed to be grouped upon
this supposition, there will result the equation
Ti=Ui7
1 T=1(3 ., g
where = {28(tafto,+ - 1)) }* . P,
P,_,= E{ﬂoi Nz » oy, g(ﬂo, 7, « --”oi_l)}
Pi—!= 2{779i+1 Nosp90 '7797;&(7791 7o, - "”9i) ¥
and H=A}.n+Aj.n+ ...+ A%,
A, meaning E{(1e—110,) (1= 110,) + - (=0, _, ) C (0, 70,70, }

and 7, meaning x—A,.
MDCCCLIII. 3 Q
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Let the n factors be constituted of m, factors 7, m, factors #,...m, factors .. Then
Zi={bg(771 ’72-»-771')7
where p=m,.m,...m;

Py =ul(m nye )™ e

and Pi_o=p, Lt g o)ty i

Ao L1y By )y T Ay g

+ &ec. &e.

+f"i§(’71 Nges -”i—l)’?inl—l-”glrl RN

. —F
where = = =

18 (naNg--1) | 1801 13- m) 781 Mg+ + - 1i—1)
Hence Ti=w(n, 772...77,){ : Qm? 42 ( lmz +++ .

Again, in U, the term containing », will be
m, 7712{ (771 —‘772) (771 _'773) “ee (771 _”i)g(ﬂz Ngee -”i) }2
=myn X (mz ms. --mi)2 X (771 '—’72)2(’71—773)2- . (771 _”i)2{ Zﬂz'%- . -”i}2

2
= %1”‘ X (.o )L 75+ 715).

Hence U, =p(n, 772”'”i){mg')q:;;-~-ﬂi+ﬂ2§ﬂ17zz---ﬂi+ &C.}:Ti.
Hence, therefore, U,—T; vanishes whenever the roots of fx contain only ¢ distinct
groups of equal roots, and it has been shown that U, and T; each contain only 2¢—1
of the coefficients of fz, so that U,—T), is a function only of » and these 2i—1 letters,
and consequently by virtue of the Lemma in Art. (a.) U;—T; is universally zero, i. e.
U, is identical with T, as was to be proved. In the same manner as observed in a
preceding marginal note, the expression given in the antecedent articles for the
numerator of the ith convergents having been verified for the case of the roots con-
sisting of only i distinct groups, could have been at once inferred to be generally true
by aid of the Lemma above quoted.

Art. (f.) Since the coefficient of » in T, is Z,_, X Z;,, we deduce the unexpected

relation
SL(Ay hooohi_y) X ZL(Ay By b)) =Pi4+-Pi4 ... +P2,

where P,=3{(ho—y) (hy—hg) ... (hy—ro,_ (b hoye- Tt )}-

So that every simplified Sturmian quotient to Jj%;—r, when the (r) roots of fx are real, will

be the sum of n squares. But the equation is otherwise remarkable, in exhibiting

the product of the sum of (nl_;)(z(i_l; +2) squares by another sum of 1= 11)2(n:-z-— b

squaves under the form of the sum of n squares.
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If we call the ith s1mphﬁed denominator to the Sturmian convergents to 7 f , Di(),
and if we call the ¢th simplified quotient X,(x), we have
Xx=Z2,(D;_h,)?.(x—h,).
If we construct the numerators and denominators of the convergents to
11 1
- @G- 4G |
according to the general rule for continued fractions as functions of Q,, Q,, Q;, &c., so
that calling the denominators A,, 4,, A, &e. A,
A=Q, A,=QQ,—1...... A=QA,_ —A,_,,
we have A,_,w"‘z'“z L Z(‘_I)Dt—l(w)’

2
j—10Ldj—3 ¢ )

A;_,.x being in fact the multiplier of f’x in the equation which connects fx and f'a
with the i—1th complete residue, and consequently retaining Q(x) to designate the
complete ith quotient, we have

Z: ., 2o Tt . 2
Qr)=22 i Bime B0 3y, | B} (x—h,)
() Z? Zg—-z 3—4 Z(t)+l { (

=Z?_l i_s Z,e.s Z(i) 2{{A‘+l,he}2(m—he)},

2
Zi 2o Ldjmy (I)+ 1

which equation gives the connexion between the form of any quotient and that of the
immediately preceding convergent denominator of the continued fraction which ex-

Vs

presses 7—:%‘—

Art. (g.) I have found that the coefficients of the n factors of fx in the expression
above given for the quotients possess the property that the sum of their square roots
taken with the proper signs is zero for each quotient except the first (the coefficients
for the first being all units), 7. e. D2, 4Dk, +...D;h,=0 for all values of ¢ except i=1.
Moreover I find that the determinant formed by the » sets of the n coefficients of the
factors of fx in the complete set of n quotients is identically zero, ¢. e. the Deter-
minant represented by the square matrix
" 1 1 1 1 h

(D, k) (D, k) (D, ks)* ...(D,h,)?
(Dy.2,)* (Dyhy)* (Dyhy)? ...(Dy k)

A

L Desh)* Dy o)’ (D)oo (Dibn)® )

Art. (h.) It should be observed that Us is the form of the simplified quotients for all
the quotients except the nth (i. e. the last), for which the simplified form is not U,
but U,<+Z(h, h,...h,), which arises from the circumstance of the last divisor, which is
the final Sturmian residue, not containing x; it being evidently the case that the division
3Q2
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of a rational function of a by another one degree lower, introduces into the integral
part of the quotient the square of the leading coefficient of the divisor, subject to the
exception that when the divisor is of the degree zero, the simple power enters in lien
of the square. The general formula gives for the reduced nth quotient the ex-
pression

S{(—hy by g iy— B (R . h,) (=) 3,
which equals

L(hy by ) ZEL(hy by B) (— D).
Rejecting the first factor, we have

SU(hy hy...h,) (x—h),

which is equal to the penultimate residue, which residue is (as it evidently ought to be)
identical with the simplified last quotient.

!
Art. (i.) We bave thus succeeded in giving a perfect representation of Jig) i. e. of

J

1 1 1
— ﬁl+x—_ﬁg+ O Y

under the form of a continued fraction of the form

1 1 1

my(z—e)—  my(x—ey)— M (% — €,)°

where m, m,...m,; e, e,...e, are all determinate and known functions of A, h,...A,.
We may by means of this identity, differentiating any number of times with respect
to x both sides of the equation, obtain analogous expressions for the series

1 1 1
Ry Ly A L e Py

But to do this we must be in possession of a rule for the differentiation of continued
fractions whose quotients are linear functions of the variable. I subjoin here the
first step only toward such investigation.
Let the denominator of
1 1 1

.......

where ¢, ¢,...¢, are any n arbitrary quantities, be denoted by (915 Gos qs...q,], so that
the entire fraction will be equal to

prryaan
(019295 qn)’

any such quantity as [¢; ¢;.,...¢,] may be termed a Camulant, of which ¢,, ¢;,,...q, may
be severally termed the elements or Components, and the complete arrangement of the
elements may be termed the Type. The cumulant corresponding to any Type remains
unaffected by the order of the elements in the Type being reversed, as is evident from
any cumulant being in fact representable under the form of a symmetrical determinant,
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thus ex. gr. the cumulant [¢, ¢, ¢, ¢.] may be represented by the determinant

g 1 0 O
1 ¢ 1 O
0 1 ¢, 1

o 0 1 ¢,

and ¢, ¢, g, g, will in like manner be represented by the determinant

g 1 0 0

1 ¢ 1 O
1 g, 1

0 0 1 g¢q,

which is equal to the former.

Art. (j.) Letit be proposed in general to find the first differential coefficient in respect
to « of the fraction

[_Qz' l_h+1----9n]=
(91 92 95-++ 0] ke

where each ¢ is a function of one or more variables.
I find that the variation of F; may be expressed as follows :—

—F=0[q1 g2 -+ Gizs> 9] F0[q0s Gore-Gizss Gus] T
4315 Go> Gove-Gicrs Gus] - [Gor Guer ]’ &C- 0[5 Gos Gse-vGivos Gimr]-[Gns Grors Grae 4]’}

(91> G2 G5+ +-9u]™

Art. (k.) Suppose i=2, and ¢,=a,x+b, g =a,x+b, -+ g.=a,x+b,,
we shall have by virtue of the above equation,

dp el {__L,‘L_l_ 1}
de T2 1. €. dr’ G~ Go— gs...qn
1
[gl Gq. g ]Q{a 1 +a”"1 g"+a"“‘ I:qm Qn—] + &C +(l [qm qn—n qn—- . 92]2}.

If we call F,= fz every such quantity as [¢,, ¢,-....q;] represents to a constant
factor prés the (i—1)th simplified residue (px counting as the first of them) to

%f , and making certain obvious but somewhat tedious reductions, and rejecting the

common factor — (f 7 e obtain the expression

Coiy By Ry R (g g
o o o= (S TP,

where R, R,...R, represent ¢z and the successive simplified residues to fz, ¢z, and
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C; means the coefficient of the highest power of x in R, and C, the first coefficient
in f*. ‘

Art. (I.) If we take g(x) of the same degree as f{(«) and for greater simplicity make the
first coefficients in f{x) and g(z), each of them unity, the successive simplified residues

to‘-qf—z will be identical with the simplified residues to _—_J_fg%gv (including amongst

them the quantity gr—fx itself), and since
(fr—g(@))ge—(fo—g(@))gr=(g'3fr— f'x.gz),

the right-hand side of the equation above written, when the residues are made to

refer to /' and g, instead of referring to fand ¢, are taken of the same degree in z,

becomes equal to f'rgx—frg'x; and if we now agree to consider f and g as homo-
geneous functions each of the nth degree in « and 1, the equation becomes

R!, R; R; R
"0“,"‘01.02""02.03"" ‘oo

= (@, Ve V=g D fa N=p(ag f+5m/) (5e) —3(vig+a-6) (5F)
_l{ﬂ dg__df dg}:__lJ(f’ 2),

TaldUde” da’dl
where J indicates the Jacobian of the given functions f and g in respect to the
variables « and 1, meaning thereby the so-called Functional Determinant of Jacosx
to f and g in respect of « and 1, which equation also obviously must continue to
hold good when we restore to the coeflicients of " in f'and g their general values.
It may happen that for particular relations between the coefficients of f and g

* This result may be obtained directly as follows ;—
Let fz, go and the (m—1) complete Sturmian residues be called p, p, p,...p; let the » complete quotients
be called ¢, ¢,...¢s, and let the allotrious factors to the residues p,, p;, ... p be called poy piy...foy; then
Po=01-P1— P25 Pr=0o Po—Ps} P2=0s py—ps; &e.
hence P19p0—Podp1 =p100: + (P00, —podpy)
=p199, 4 p30g: + (ps0pa —p20ps)
= &ec.
=p10q, +0300:+ P05+ - .. +£30¢n 5
but we have in general pi=p;.R;;

hence Bﬁlizoi: sty
G
20— Ci-—l . R2 .
and pi0gi= Gt -piRi0z ;

but it may be easily seen that

i1 v U= 21 ; except when ¢=1, for which case u;—;.pu;=1,
i1
1 R¥z, when ¢>1, and =99R‘{’5x when i=1,
Ci—1.C; C,

hence pid¢;i=

which proves the theorem in the text.
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certain of the residues may be wanting, which will be the case when any of the
secondary Bezoutics have their first or successive first terms affected with the coeffi-
cient zero; the equation connecting the residues with the Jacobian will then change
its form (as some of the quantities C,, C,, ... C, will become zero) ; but I do not propose
to enter for the present into the theory of these failing, or as they may more propel ly
be termed, Singular cases in the theory of elimination.

Art. (m.) The series last obtained for J (f, g) leads to a result of much interest in
the theory, and of which great use is made in the concluding section of this memoir,
viz. the identification of the Jacobian (abstraction made of the numerical factor n)
with what the Bezoutiant becomes when in place of the » variables in it, , u,...u,,
we write 2*~', 2"~%, ... #, 1. Thus suppose fand g to be each of the third degree,
and let

Ar*4+Ha+G
Ha*4 Bax+F
Ga*+ Fa+4C

be the three primary Bezoutics; if we make
' P=u x=v l=w,
these may be written under the form
Au+Hov+Guw=L
Hu+ Bv+ Fw=M
Gu+ Fv4-Cw=N;
and if the Bezoutiant be called d, we have
L=3 M=% N=G;
The simplified residues to f and g are L, (L, M), (L, M, N), where (L, M) means
the result of eliminating » between L and M, and (L, M, N) the result of eliminating
u and v between L, M, N ; and by a theorem (virtually implied in the direct method *

of reducing a quadratic function to the form of a sum of squares), if we call the
leading coefficients of these quantities C,, C,, C,, we have

(L, M)?2 | (L, M, N)® ¢,
C+c ¢, t . =1

1 . .
Hence when n=3 ?—’.J(f, g)=H when in 4, », v, w are turned into 2%, x, 1, and so
in general for any values of », the Bezoutiant correspondingly modified, becomes

%.J(f; &), as was to be shown--.

* Viz. that of M, Cavcny, adverted to in Section IV. art. 44-45.
+ Compare Jacos1, “ De Eliminatione,” § 2. The general expression for the allotrious factor, I may here
incidentally mention, is given under the head Theorem @, § 16, which comes quite at the end of the same paper.
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Art. (n.) The expressions obtained for the quotients to 7 may be generalized and

extended to the quotients to Jf—j, where ¢z and fx are two functions of x of any de-

grees m and n, whose roots are respectively, &, k,...k,, and A, h,...h,. If we suppose
gz 1 1 1 1
JrT Q@)= gol) = ¢5(@) = T guar(@)’
where Q(z) is of »—m dimensions, and g,(z), ¢5(2)...q,...(x), each of one dimension
in x, it may be proved that on writing

v 1 1 N
Q@) — gole)— """ gi(®) ™ Di(z)’
we shall have
2fk9 Al
{(N o (o — k)}:qu+l(x) LAY
}l@ '
E;A{(Dihey Fla— he)} Cgn@ . « . . . . . (B)
where C+C=o0,. . . . . . . . . . .. (E)

Cqi..(x) being the (i+41)th simplified quotient. When Q(x) is a linear function of «,
in finding ¢,x from the formula B, we must take D,w=1. The proof of this theorem
being generally true, may easily be shown to depend upon its being true in the special
case*, when m=u+i, and n =w-+7 (m being supposed less than =), and 4, h,, ... A,
become /, L,...1, h, h,...h;, and k, k,...k, become I, I,...L, F, k,...k;; and the truth of
the theorem for this special case (if for instance we wish to prove the formula (B))
depends upon the expression

Byhgeiihoy | | hihy by
by lyoike || hyhy,.. b,
Folyidn || By gk

being identical with the expression

{\ by Foye. ,hh -, ‘X(”” h‘)(’“""‘?)“‘(”"'“kf’-‘)}
hll

i
‘hh oy ..

* By virtue of the Lemma, that when g2 and fz are two algebraical functions (27 + aa” &c.) ; (ate 4 gan+(© &e.)
no function of the coefficients vanishing identically when i roots of fz coincide with ¢ roots of @ respectively can
be formed, in which there are fewer of the coefficients of £ and ¢ respectively than appear in the leading coeffi-

cient of the (#—i41)th residue of%
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as it may readily be shown to be. And the formula (A.) may be verified in precisely
the same manner. There is no difficulty in finding the values of C and C', which are
products of powers, some positive and some negative, of the leading coefficients in
the simplified residues, and recognising that they satisfy the equation (E.) ; when ¢z
is of one degree below fx this equation is of the form C+4C'=

Art. (0.) When gx=f"x, this expression for the (z-41)th S1mpllﬁed quotlent becomes
2(D; h)*(x—r), as previously found ; the correlative expression will be

_meyww—m,

k being any root of f’v=0, which is equal to the former expression. The general
expressions above given for the simplified quantities are of course integral functions
of h and £, although given under the form of the sums of fractions, by virtue of the

S(%)

well-known theorem that E‘f—'/?’ where 3 is an integral function of 4, and the summa-

tion comprises all the roots (%) of fh=0 is always integral.
Art. (p.) It will be found that for all values of ¢ greater than unity

zang%~o

and that 520.(Dshe) F2=0.

The theorem of art (n.) is in effect a theorem of Cumulants of the form
[Qu(@); g:(%), -..qi(%)...qu(2)],
where the elements are all independent of one another, and where fx represents
[Qu(%) g2(%) go()...qu(2)] and g represents [¢,z, g,(x), ...q, ()],

n being any number whatever greater than i; this makes the theorem still more
remarkable. The urgency of the press precludes my investigating for the present the
more general theorem which must be presumed to exist, whereby ¢;., can be con-
nected with [¢, ¢.¢s...q:], or [, ¢,...q:], and with [g,¢,¢,...q:,,] and [q, GaereGive)s
when each (g) represents a function of an arbitrary degree in . The theorem so
generalized would comprehend the complete theory of the quotients arising from the
process of continued division, without exclusion of the singular cases (at present
supposed to be excluded) where one or several consecutive principal coefficients in
one or more of the residues, vanish.

Art. (¢.) The complete statement of two twin theorems suggested by and intimately

connected with the biform representation of the quotlents f , given in the preceding

article, is too remarkable to be omitted.

Suppose er=f"x, and let the successive convergents to Le be called

fr

1 th' tn_g.m tn._l;-l'
"9 ) **Y s 9%
T,.2o T,» T,—1.2 T,z

where the subscrolet index to ¢ or T indicates the degree in . Then if we call the
MDCCCLIII. 3R
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roots of fx h, h,...h, the theorem already cited in a preceding article, concerning the
denominators of the convergents, may be expressed as follows :—
(RN RN ()
¢k1> ’ ‘P"e) ’ , Phn )
(Tih)*s (T ke)'s s (T B
Y (T h)'s (Tyhy)®s oo (Ty by

i
o

;(T k) (T hy)?s oo (T,,_l.h,,)z_"
where it will be observed that the first line of terms consists exclusively of units,
since f'z=¢x by hypothesis.

Correlatively I have ascertained that preserving the same assumption that pr=f ’x,

o'k

'k
so that consequently 7 means %, the following theorem obtains, viz. that if

k k,...k,, are the (x—1) roots of .
(PR P'ke (B}
) (@) ()
J@mys @@ b))
B (G5 e (talha))?
C(fama])'s (bma(hs)) 5 (b))

It may consequently be conjectured, when ¢ and f are independent functions of

z and respectively of the degree n—1 and n, and % is expanded under the form of a
continued fraction, of which, as before, 'll‘l ; % 3o t,'i,—;‘ are the successive convergents,
that we shall have analogous determinants to the twin forms above given, each
separately vanishing, these more general determinants differing only from their
model forms in respect of the uppermost line of terms in the one of them, being
each multiplied by certain functions of A, &, ... A4, respectively (all of which become
units when px=f"r), and in the other of them by certain functions of %, k,,...k,.

The exact form, however, of such functions, and even the possibility of such form
being found capable of making the determinants vanish, remains open for further
inquiry.

SectioN IV.

On some further Formulw connected with M. STurM’s theorem, and on the Theory of
Intercalations whereof that theorem may be treated as a corollary.

As preparatory to some remarks about to be made on the formul connected with
M. SturM’s theorem, it is necessary to premise two theorems concerning quadratic
functions of great importance, one which, notwithstanding its extreme simplicity, is
as far as I know very little (if at all) known, and the other was given in part many
years ago by M. Caucny, but is also not generally known. The former of these
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two theorems is as follows. If a quadratic homogeneous function of any number
of variables bhe (as it may be in an infinite variety of ways) transformed into a function
of a new set of variables, linearly connected by real coefficients with the original set,
in such a way that only positive and negative squares of the new variables appear in
the transformed expression, the number of such positive and negative squares respect-
ively will be constant for a given function whatever be the linear transformations
employed. This evidently amounts to the proposition, that if we have 2n positive and
negative squares of homogeneous real linear functions of n variables identically equal
to zero, the number of positive squares and of negative squares must be equal to one
another, so that ex. gr. we cannot have
* {(witui+ &e.... Fuitug ., —u o —up . — &eo —uj,}

identically zero when % of the variables are linear functions of the remaining n; and
this is obviouslythe case, for if the equation could be identicallysatisfied we might make

Upi2=U; Up i 3=Ug.....n Ugy=Up_1,

and we should then be able to find u,,, as a real numerical multiple of «,, and con-
sequently should have the equation u2.{1+4#*}=0, which is obviously impossible ;
a fortiort we may prove that in the identical equation existing between the sum of
an even number of positive and of negative squares of real linear functions of half
the number of independent variables, there cannot be more than a difference of two
(as we have proved that there cannot be that difference) between the number of
positive and negative squares. Hence there must be as many of one as of the other ;
and as a consequence, the number of positive squares or of negative squares in
the transform of a given quadratic function of any number of variables effected by
any set of real linear substitutions is constant, being in fact some unknown trans-
cendental function of the coefficients of the given function. I quote this law (which
I have enunciated before, but of which I for the first time publish the proof) under
the name of the law of inertia for quadratic forms.

Art. (45.). The other theorem is the following. If any quadratic function be repre-
sented in the umbral notation* under the form of (@, x,+a, 2,4 ... +a,,)’, where a,,
a,...a, are the umbra of the coefficients, and «,, «,...x, the variables, then by writing

a, a, a, a, a,
x,+ x,+ &3+ R S L,=1,
a, a, as a, a,
a, a, a a a, a a, a,
aa 2, al az m+'a1 az z,+ &c. —|—ia “ 2=,
1 Y2 1 Y3 1 4y 1%n
a a,a a,a,d a, a, a,
1 Wg W3 | 2 Us .1‘4+ &.C. + xﬂ:ya
a,a,a, a,a,a, o 10,830,
&e. &e. &c.
a, Gy...0
1Y%2 n mn=y”’
a, a,...a,

* For an explanation of the umbral notation, see London and Edinburgh Philosophical Magazine, April 1851,
or thereabouts.

3RrR2
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(a, v, 4+ a, 2,4...4a, :v,,)zv will assume the form

a, a, a, a,a, a, a,...a,_, a,
0| o @0y ,0 ) |31 Ay Q5] o a,0y...0,_1 Ay| o
SR RULTA TR UL ST
a, y a, 4 a, a, Y @, ty...Q,_, Gn
a, a, a, a, a,...a,_,

and consequently the number of positive squares in the reduced form of the given
function will always be the number of continuations or permanencies of sign of the
series

a |aa

a, a,

a,a, a,
a, a, a

) a, a,...a,

.
4 eee

1;

a,’ a, a,...a,
the several terms of this progression being in fact the determinants of what the
given function becomes when we obliterate successively all the variables but one,
then all but that another, then all but these two and a third, until finally, the last
term is the determinant of the given function with all the variables retained. This
comes to saying that if we call the function (suppose of four variables) f, and we write

& 7 & &f

dx? dzw, dz, do, dzy  dz, dr,

éf & & &
dz, dz, di:  dzgdzy  dwydz,

af & af @
dugde, dzg d, dz? dug da,

&f & & &

dyde, deyde, drgdeg gz

(where all the terms are of eourse coeflicients of the given function expressed as above
for greater symmetry of notation), the inertia of f* will be measured by the number
of continuations of sign in the series formed of the successive principal minor coazal

&f

determinants (in writing which I shall use in general (r, s) to denote —— ),

F(l, l) (1)2) (la?’) (1:4)"—|

,1 1,2 1,38
(1, 1) (1,2) ’ o) (2,1) (2,2) (2,3) (2,4)
L (1, 1), [(2, N (2,2)]’ g; 33 23 G B2 5.3 6

(41) (4,2) (4,3) (4,4)
and in like manner in general*.

* T have given a direct & posteriori demonstration in the London and Edinburgh Philosophical Magazine,
that the number of continuations of .sign in any series formed like the above form a symmetrical matrix, is
unaffected by any permutations of the lines and columns thereof, which leaves the symmetry subsisting, that
is to say (using the umbral notation), if 8, 0,, 6;....0; are disjunctively equal, each to each, in any arbitrary
order to 1, 2, 3....%, the number of continuations of sign in the series

/7] ag, Ao, Qg Qp, g, ... .0g;

L g, Qg, o,

1, .

) ’

ag, ag, dg, Qg, Uy, Ao, Qg, g, Ag,.+..Co; |

is irrespective of the order of the natural numbers 1, 2, 3....7 in the arrangement 0,, 8,, 8;....9;
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Art. (46.). Reverting now to the simplified Sturmian residues, since by the theory
set out in the first Section these differ from the unsimplified complete residues
required by the Sturmian method only in the circumstance of their being divested
of factors, which are necessarily perfect squares and therefore essentially positive,
these simplified Sturmians may of course be substituted for the complete Sturmians
for the purposes of M. Sturm’s theorem. The leading coefficients in these simplified
Sturmians, reckoning f’(x) as one of them, will be

mZ(h, hy), ZU(h, hyhs)...L(Ry By ),

which it is easily seen, as remarked long ago by Mr. CayLey, are the successive prin-
cipal minor coaxal determinants of the matrix

Opy Oy Oy 030020y

Oy Oy Ogunrenn Opm
0'2’ 0'3 .......... G'm_l
Oy Oppevevanen Oom—ss

where in general o,=h}+ ;... 4+ A, and of course s,—=m. M. HermiTE has improved
upon this remark by observing, which is immediately obvious, that if we use o, to
. . I }l; 3
denote, not the quantity above written, but = 424, "™
€ s q y n, bu .Z’—]l1+.z'—]l2+ .z*—/zm’
determinants of the above matrix will become respectively

1 G Y. Uhhohy) U hgohm)
R 2{@—%)@—@)}’ (e To) (@) (@—Tg) * ** (@ Ty) @— ) (@)

the successive coaxal

that is to say, these successive coaxal determinants, when multiplied up by fr, will
become respectively

S(e—hy)(@—h)e.(@=h,) 5 3 k) {(@—h)@=h) e (@=hp)} 5 evenes 3Ly o),

that is to say, will represent the simplified Sturmian series given by my general
formulee. M. Hermrte further remarks, that the matrix formed after this rule will
evidently be that which represents the determinant of the quadratic function (which
may be treated as a generating function)

1

Ex L % o ST SR Y i T S
-

in which, since only the squared differences of the terms in the (k) series finally
remain in the successive coaxal determinants, we may write (x—h,), (x—h,)...(x—h,,)
simultaneously in place of A, A,...h, without affecting the vesult, consequently the
generating function above may be replaced by the generating function

‘;.:1:']2—1' {w,+ (x"‘ hl)u2+($—h1)2.u3+ et (w—hl)"“".um}’ H
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the corresponding matrix to which becomes
1
= 7 by O ool s

b, 91: 92) .

0, 6, ol
0m—2’ m—1) "'g2m-—3’
1
where ¢; denotes 2(r—a), and Ea;Tll{:%' Hence every simplified residue is of the
1

form

lr’al by .4 } |

flxx 02 93 ---0r+1 _i_fwx<| 00 9[ "‘ar+1 L
gr 0r+1"-921-—-1j Lgr 0r+1 '“921*-—1)'

The residue in question will be of the degree m—r—2 in x, and consequently we
have, according to the notation antecedently used for the syzygetic equations

(0 ¢, 0,...0.

|
3
|
A
=
=
‘F;
i
N

U0 0., .0y ,J

Elegant and valuable for certain purposes as are these formula for ¢,,, and r,, they
are affected with the disadvantage of being expressed by means of formulae of a
much higher degree in the variable 2 than really appertains to them, the paradox
(if it may be termed such) being explained by the circumstance of the coeflicients
of all the powers of x above the right degree being made up of terms which mutually
destroy one another. Upon the face of the formule, ¢,,, and 7, which are in fact
only of the degrees r-+1, and r respectively in x would appear to be of the degree
14+3+454...4(2r—1), i.e. of the degree °.

Art. (47.). T may add the important remark, which does not appear to have
occurred immediately to my friend M. Hermrre when he communicated to me the
above most interesting results, that in fact, by virtue of the law of inertia for quadratic
forms, we may dispense with any identification of the successive coaxal determinants
of the matrix to the generating function

2_9—_1—.771{ul+h1u2+k?~u3+ veo -l—h}”“.u,,,}“
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with my formulee for the Sturmian functions, and prove ab initio in the most simple
manner, that the successive ascending coaxal determinants (always of course supposed
to be taken about the axis of symmetry) of the matrix to the form above written, or
to the more general form (which I shall quote as G, viz.)
2(e—h){ @y (h)u,+@(h)us+ oo 40, (B) w0} . o . L o (G)
(where ¢, @,...p, are absolutely arbitrary integral forms of function with real
coefficients), will form a rhizoristic series in regard to fx (i.e. a series, the difference
between the number of the continuations of sign between the successive terms of
which corresponding to two different values of ¢ will determine the number of real
roots of ¢ lying between such two assumed values), provided only that ¢ be an odd
positive or negative integer. Nothing can be easier than the demonstration, fer
whenever ¢ is greater than any one of the real roots as (%,)
Ist. Any pair of imaginary roots will give rise to two terms of the form
(t+my/=Z7)% (vFwy/=1)" and (I—my/=1)".(v—w/=1)";
or more simply,
(L+M/=1). (v w 420w,/ —1)
and (L—M,/=27).(" —w* — 20w, /1),
where v and w are real linear functions of w,, u,, ...u,. The sum of which couple
will be

2{L.(w*—v* "“QM"’U}=%..{(Lu—-Mv)2—(L2+M2)v2} =p'—g’;

so that each such couple combined will for every value of x give rise to one positive
and one negative square.

2ndly. Any real root of the series 4,, &, ...k, when ¢ is taken greater than such root,
will give rise to a positive square of a real linear function of u,, u,, ...%,.

3rdly. Any real root of the same series, when ¢ is beneath it in value (¢ being odd),
will give rise to the negative of the square of a real linear function of the same. Hence
the number of real roots between ¢ taken equal to one value (@), and ¢ taken equal to
any other value (b), will be denoted by the loss of an equal number of positive squares in
the reduced form of the expression (G.) when ¢ is taken (a) and when ¢ is taken (4) ; <. e.
by virtue of art. (45.) will be denoted by the difference of the number of permanencies
of sign in the successive minor determinants of the matrix corresponding to the
quadratic form (G.)* (which we have taken as our generating function) resulting

* The inertia of the quadratic form G is the measure of the number of real roots of fi comprised between w
and p, and may be estimated in any manner that may be found most convenient. - If p be made infinity, and
@;h be taken equal to A=}, and the inertia of the corresponding value of G be estimated by means of the for-
mulz in ordinary use by geometers for determining the nature of a surface of the second degree, the criteria of
the number of real roots in fz will be, or may be made to be, symmetrical in respect to the two ends of the
expression fz. This system of criteria, however, is not so good as that given by the Bezoutiant to the two
differential coefficients of f(z, 1) taken with regard to x and 1 respectively, which will also possess the like
character of symmetrical indifference, and be one less in number than the former.
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from the substitution respectively of @ and & in place of ¢, which gives a theorem
equivalent to that of M. Sturm, transformed by my formule, when we choose to
adopt the.particular suppositions

g=—1 o0h=1 o¢h=h ¢.h="r.. .0 h=E"""

This method of constructing a rhizoristic series to fx by a direct process is deserving
of particular attention, because it does not involve the use of the notion of continuous
variation, upon which all preceding proofs of Sturm’s theorem proceed. It completes
the cycle of the Sturmian ideas. Happily this cycle was commenced from the other
end, for it would have been difficult to have suspected that the root-expressions for the
terms in the rhizoristic series could be identified with the residues, had the former
been the first to be discovered, and much of the theory of algebraical common mea-
sure laid open by means of this identification would probably have remained unknown.

Art. (48.). I proceed now to consider a theorem concerning the relative positions
of the real roots of two independent algebraical functions as indicated by the suc-
cession of signs presented by their Bezoutian secondaries ; this more general theory
of intercalations or relative interpositions will be seen to include within it as a corollary
the justly celebrated theorem of M. STurm.

Let the real roots of fr taken in descending order of magnitudes be %, A,...4,, and
the real roots of ¢« taken in the like order #, #,...7,, so that

Jr=(x—h)(x—hy)...(x—h,)H
pr=(x—n)(x—7)...(x—7,)K,
H and K being functions of a incapable of changing their signs. Now, as in
M. Sturm’s method, let us inquire what takes place in respect to the sign of %,
which I shall call the Indicatrix, as @ descends the scale of real magnitude from
+ coto —co. If between 4co and £, ¢ real roots of gx are contained, it is obvious
that as « travels from +-co to the superior brink of 4,, the Indicatrix will change its
sign from + to — and from — to 4 altogether ¢ times, so that at the moment when
a is about to pass through 4, it will be positive if ¢ is zero or even, and negative if
i is odd ; but the moment after x has passed through the value 4,, the indicatrix will
be negative on the first supposition, and positive on the other supposition. Hence
immediately after the passage of x through 4, the indicatrix will have been once
oftener negative than positive on the one supposition, and as often negative as posi-
tive on the other. Again, in like manner as x traverses the interval between £, and
the inferior brink of %,, if no  or an even number of #’s occupy this interval, the sign
which the Indicatrix had at the beginning of this interval will have been reversed
once oftener than restored; but if there be an odd number of £’s so interposed, the
number of reversals and restorations will have been identical; and so for each
successive interval, reckoned from a value for  immediately subsequent to one real
root of fx, down to a value immediately subsequent to the next less real root of the
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same; and it is evident that the effect upon the sign of the Indicatrix at the end of
every such interval depends, not upon the number of #’s grouped together in such
interval, but upon the form of the group as regards its being made up of an odd or
even number of terms [the first interval will of course be understood to extend from
-+ to a value immediately inferior to 4, and the last from a value immediately
inferior to £, to —co]. Hence as regards the relation of the signs of the Indicatrix
at the beginning to the sign at the end of every such interval, nothing will be altered
by taking away any even number of #'s that may be found therein. If we suppose
this to be done, we shall then have in some of the intervals one 7 occurring and in
the other intervals noz; that is to say, some of the A’s will be separated by single s,
but other A’s will come together. Again, by removing any even number of %’s not
separated by #’s (and thus removing an even number of intervals), it-is clear that as
many changes of sign of the Indicatrix will have been done away with from 4 to —
as from — to +, and no effect upon the excess of the one kind of changes of sign over
the other kind of changes of sign will have been produced. By removing pairs of 4’s
in this manner, it may happen that »’s will again be brought together, any even number
of which, not separated by %’s, may again be removed and then pairs of A’s not sepa-
rated by #’s in their turn, and so continually Zoties quoties until at length we must arrive
at a reduced system of 4’s and #'s, where no two 2’s and no two #'s come together, or
else all the A’s and all the #'s will bave disappeared. Let the scale of 4’s and #'s thus
simplified and reduced be called the effective scale of intercalations. The number
of /’s and the number of #’s in any such scale will be equal, or will at most differ
from one another by a unit, since at each part of the scale, except at the end, every
h is followed by an 7 and every 7 by an A. If the scale begins and ends with an 4,
there will of course be one more & than #; if it begin and end with an », there will be
one more 7 than A; if it begin with an 4 or an 7 and end with an 7 or %, there will
be as many of the one as of the other.

1st. Suppose the effective intercalation scale to commence with an 4; then in passing

from + oo tojust beyond the first 4 the sign of the indicatrix 2% changes from -+ to — ;

Jr
it changes again from — to + as it passes the first 7, then again from 4 to — as it passes
the second A, and so on ; that is to say, there will be a change always in the same direc-
tion from 4 to — as « passes, from being just greater than to being just less than any 4
appearing in the effective scale. 2nd. If the effective scale begin with #, the indicatrix
will conversely be negative after passing the first and every subsequent 7, and change
from — to 4 in the act of passing through the first and every subsequent 4. So
that on either supposition the changes of sign for the effective scale always take place
in the same direction, and the number of A’s in the effective scale will be measured
by the number of such changes, and consequently will be measured by the difference

between the number of times that the indicatrix &= changes its sign from + to —
fz g g

as x passes through each in turn of the real roots of fz, and the number of times that in
passing through any such root it changes its sign from — to - ; if the former number be
MDCCCLIIL. 3s
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greater than the latter, the effective scale of interpositions will begin with a root of fir ;
if it be less, the scale will begin with a root of px. If instead of beginning with +co
and ending with —oo we begin and end with any two limits, @ and b respectively
(making abstraction of all roots of fx or of ¢z lying outside these limits, and forming
the effective intercalation scale with the roots comprised within these limits exclusively),
we shall obviously obtain a similar result, but with the condition that the changes from
+ to — will be in excess if an even number of 4’s and #'s combined be cut off by
the superior limit, and the effective scale begin with an %, or if an odd number of A’s
and #'s combined be so cut off and the scale begin with an 7; and in defect if an odd
number of #’s and #’s combined be so cut off and the scale begin with an 4, or an even
number be so cut off and the scale begin with an 5. If, now, supposing fx to be of x,
and ¢z of not more than n, say (m) dimensions, we form the signaletic series fz, o,
B,, B,, ...B,, (where the B,, B,, ...B,, are the Bezoutian secondaries or simplified suc-

. . . X .
cessive residues corresponding to i expanded under the form of an improper con-
fu prop

tinued fraction), it may be shown, in the same way as for Sturm’s theorem, that
Whenever% changes from |- to — a change of sign will be gained in the series, and

when from — to 4 a change will be lost; and that no change can be gained or lost
except as x passes through the successive real roots of fx. Hence the difference
between the number of changes of sign in the above signaletic series when x is taken
(a), and the number of the same when « is taken (), will indicate the number of
roots of fx remaining in the effective scale of interpositions formed between such of
the roots of fx and of ¢x as lie between (a) and (4) ; calling the one number I(a) and
the other I(5), the sign of I(b) —I(a) depends not on the relative magnitudes of (a) and
(), but upon the manner in which the effective scale commences; if I(a)—1(b) is
positive, the effective scale formed between the (a) and (b) will commence with a
root of fx ; if negative, it will commence with a root of ¢(x).

Art. (49.). In forming the scale of effective interpositions, it is evidently not neces-
sary to go on reducing the (%) series and the 7 series separately and alternately; the
same result will be effected more expeditiously by eliding simultaneously any even
number of A’s that come together without being separated by an 7, and any even
number of 7's that come together without being separated by an (%), and, repeating
this process of simultaneous elision, as often as may be required, until no two A’s
or 7's come together. Thus, for instance, denoting the magnitudes of the series of real
roots of f and of ¢ by the distances of 2 and # points taken along a right line from a
fixed point therein, and supposing such series of roots between the limits @ and b to be

hlhnanhnnhanahhnhnhhhhhonh,
our first redaction brings this scale to the form
hnhhnnhghh;
the next reduction brings it to the form

honnhy,
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and a third and final reduction brings it to the form
hnhn;
and accordingly we shall find for such an arrangement of the A2 and # system
I(0)—I(a)=+=2.
dfx

~Art. (50.). If we suppose ¢pz= ~3-, by a well-known theorem of algebra, any two

consecutive roots of fr will contain between them an odd number of roots of ¢z,
and the number of real roots of f'x greater than the greatest root of fx, and the
number of real roots of f'x less than the least root of fx will each be even. Hence
the effective intercalation scale between any two limits () and (6) will be formed by
merely reducing the » groups to single units, and the number of A’s in the scale so
formed will be the total number of A’s between the limits (a) and (). Moreover,
since such scale commences always with a root of fi, or with an even number of roots
of fx followed by a root of fz, if the number of #’s and #’s cut off be even, and with
a root of 'z or an even number of roots of fx followed by a root of f, if the number
so cut off be odd, it follows that for this case I(a)—1I(d), (a) being the superior limit,
will be always positive, and will measure the total number of real roots of f{z) lying
between (a) and (b) ; this, then, is STurm’s theorem, treated as a corollary to the
Theory of Intercalations.

Art. (51.). If we write down the last syzygetic equation between fr of m and ¢(x)
of n dimensions, viz.

Tper - (2) f(2) =t (2) 9243, =0,

it has been shown that the succession of signs in the series formed with fx, ¢z and
their successive Bezoutian secondaries will contain the same number of continuations
and variations as the series formed with f(z), ¢,_,(z), and their successive Bezoutian
secondaries. This indicates that the effective scale of interpositions for fr and
oz will contain an equal number of roots of fr with the effective scale for fx and
t._.(x); the two scales however will not necessarily be identical, because the roots of
oz will not necessarily be in the same order relative to the s in the one scale as those
of t,_,.x relative to the A’s in the other scale. This equality is perfectly well ex-
plained & posterw'm by the form of ¢,_;.x, which by the formula in Sectlon I1. will be
represented by

¢h 1 ¢h 2 ¢h m—
Bo—hy)@—ho) - @—hou )G Sy =

qm—

Now, whenever x is indefinitely near to any one of the roots of fz, as &, , this sum
reduces to the simple expression

®h‘h ¢h¢h W’m 1—{¢h ¢h ¢h }¢h 4

and consequently in the immediate neighbourhood of every real root of fr, ¢(z) and

t,_.. will have always the same or always a contrary sign, according as gk, oh,,...0h

is positive or negative, which will depend upon the relative disposition of the real

roots in f and ¢ ; in either case the effective scale of interpositions for fr with ¢x and
382

‘Im
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for fx with #,_,.x must contain the same number of #’s; but the difference will be,
that if ph,.@h,...¢h,, is positive an A will occupy the first place in each scale, or the
second place in each scale ; but if negative, then in one scale an (k) will occupy the
first place, and in the other scale the second place.

Art. (52.). The same process of common measure or residues which serves to furnish
a rhizoristic series for f(«) or a synrhizoristic series for fx and ¢z, will serve also to
furnish superior and inferior limits to the real roots of any proposed equation. Thus
suppose fx to be any rational integral function of (z) of the degree (x) and ¢(x) any
other function of x, which I shall begin with supposing to be of the degree (n—1),
and let the successive quotients resulting from the process of finding the greatest
common measure of fr, px continued until the last remainder is not a constant but zero,
be supposed to be (as they may generally be taken, but subject to cases of exception,
which will hereafter be alluded to) = linear functions ¢, ¢,...¢,, then we shall have

e 1 1 1 1
2ot Gt Ut @
and therefore pe=K.N
Jr=K.D,
where N is the numerator and D the denominator of the fraction
1 1 1

@+ 99—'*'5;’

and K is a constant (the value of which is immaterial to be considered, but in fact equals
2 2
Lo Lo L g

Ly, Ly, Ly, L, &c. being the leading coefficients of the last, the last but one, the last
but two, &c. of the Bezoutian secondaries to fr and ¢x). Accordingly,

if n=1, let D=¢,=p, ;
. 1
if n=2, let D=92 q1+1={‘°1{Q2+E}:‘w1-(1‘23

p 1
if n=3, let D=93{92 91+1} + =M {/'2{93+;:2}=(/J3 5

and in general let D=w,.w,.15...t0,,

where fn=q V’2=92+%l .”"32934'{%2 """"" fbn=qn+M:_l'
Now suppose « to be so taken that
g, does not lie between 41 and — 17
g - . . . . . . .+2and —2
g - .« . . . . . .+2and =2
s -« « « . LFZ2and =25, . L L L 0L (w)
Qoo+« « « . . . 2and —2
o« + « « « + . . land —1)
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where it will be observed that the excluded region lies between 42 and —2 for all
the intermediate quotients, but between only 41 and —1 for the first and last quo-

. 1. -
tient. Then p, is positively or negatively greater than 1, therefore ;—;lsaposmve or

negative fraction, but ¢, is positively or negatively greater than 2 ; therefore w, will be
of the same sign in ¢,, and also w, will be positively or negatively greater than I;

therefore }% will be a positive or negative fraction, but g, is positively or negatively
2

greater than 2; therefore w, will be of the same sign as g,, and also w, will be
positively or negatively greater than 1; and proceeding in this way, we find that all
values of u;, from =1 to i=n—1, will be of the same sign as ¢;,, and positively or

. . 1 . . . .
negatively greater than 1. Finally, o will be a fraction, and therefore, since ¢, is

positively or negatively greater than 1, m:gn-}—;l: will have the same sign as (g,)

(but of course is not necessarily greater than 1, nor would that condition serve any
purpose were it satisfied). We infer consequently, that when the conditions («) are
satisfied, w,, po, pa..-p, Will respectively have the same signs as ¢, gs-.-q,; and there-
fore D=qu,.ps,.f5..., has the same sign as ¢,.¢,.¢;...q,. Now suppose

g=ar+b, g,=a,.a+0b,...4,=a,.a+b,,
and solve the 2n equations

al‘r+bl=+cl az'z‘+b2=+C2“'an—l"r+bn—l= Cn—l an"r+bn= cn

ar+b=—c, ax+b=—c,...a, ,.0+b,_,=—c,, a,r+b=—c,

where ¢,=1 ¢=2 ¢=2......... =2 c,=1.

Whenever in any one of the » pairs of equations above written the coefficient of z is
positive, the upper equation of the pair will bring out the greater value of 2; but
when the coefficient is negative the lower equation will give the greater value.
Take the pair

ax+b;=c;

ax+b,=—c,
If a; is positive ax4-b; will always be positive, and greater than ¢, between x=c0 and
x= the greater of the two values of z; ifq; is negative a,z+ ¥, will always be negative,
and less (. e. nearer to —oo ) than — ¢, for all values of 2 between the same limits as
before. So again it will be seen in like manner, that whether a; be positive or negative
between x=—co and z= the lesser of the two values of x correspohding to the
above pair of equations, ax+-6; will always retain the same sign, and will be greater
than +c;, or less than — c¢;, according as ¢, is negative or positive. If, then, we take the
greatest of the greaters of the n pairs of values of z, i.e. the absolute greatest of the
2n values, and the least of the lessers, i. e. the absolute least of the same, say L and A
between L and A, ¢,, g5, ...q, will each always retain an invariable sign, and will then
fall without the limits +e¢, ¢, ......... +c¢,_, +c,, so that between +oo and L
and between A and—oo, ... 1, i. €. a constant multiple of f(x), will retain the
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same sign as ¢,.g;...q,, . e. will never change its sign from the beginning to the end
of one interval, nor from the beginning to the end of the other; and consequently
L and A will be a superior and inferior limit respectively to the real roots of fr. It
will of course be observed that it is indifferent for the purposes of the foregoing

theorem, whether % be expanded under the form of a proper or an improper fraction,

2. e. whether we employ the ordinary or the Sturmian process of successive division,
for changing the signs of the residues will only have the effect of changing ¢; into
(£)g:, and the pair of equations (1)¢;==c; remains the same whether the + or the
— sign be prefixed to ¢;. The result is, that if we form the 2n quantities

+1—b,  +2—b, +3-b, +2mbuy +1—b,
G Ta s o e el e g

the greatest of them will be a superlor, and the least of them an inferior limit to the
roots of fx*,
It may be remarked, that if the successive dividends in the course of the process

be multiplied respectively by %, k,, ... k,, % will take the form
bk k| :

ht Gt gt g’
and if we write e 2+b,==+¢, ax+b==c, ... a,2+b,==+c

and make a=1 c=1+4+k c=1+k ... c,=1+F,
the same reasoning as above will show the greatest and least of the 2n quantities
+1—8, +(1+k)—b, (U +k)—bpy 10,
a ay 3 e Gp—y ’ [

will be a superior and inferior limit to the roots of fx.

For greater simplicity, again, consider %, £,...%, to be all equal to unity; we may
make this addition to the theorem as above stated, viz. calling L, A,; L, A,; ... L, A,
the greatest and least values of the terms contained respectively in the series marked
below 1, 2, 3...n, viz.—

+1=b,  +2—b, +2—b +2—bpy  +1=b,
(L) = = S e T T
1 2 3 n—1 n
@ +1=b,  +2—by  +2—buy  El—bs
)y ... Eoy Eow, Fobn T
3 +1=by  +2=bpy  +1—b,
I A T -

il—bn—l. '_,Cl""bn

(n- l) Qp—) ? a,
+1-5,
(n.) . . . . . . . . . . . . . . . T’

* For a generalization and improved form of statement of this theorem see Supplement to the present Section.
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L, A;; L, A, ... L, A, will be respectively superior and inferior limits to fx, ¢z and
their successive residues. As a corollary, we see, of course, that L and A, the superior
and inferior limit to the roots of the given function fx, must always lie between -+ oo
and the greatestroot, and between —co and the least root, of the arbitrarily assumed
function ¢x.

Art. (53.). Let us now assume somewhat more generally that ¢z is any number
of degrees ¢, in x lower than fr, which will cause the first quotient g, to be
of the degree 4, in x; and let us further suppose that ¢z stands in such a relation
to fx that the following quotients, gy,, s, --- 4s,, are of the degrees 6,, ,...0, in x (4, 4;...4;
being supposed not necessarily units, as they would generally be, but any positive
integers whatever, as may happen in consequence of one or more of the leading
coefficients in any residue vanishing), then

ez 1 1 1 1

fe"go+ gt 'zos+'“+§5;’

where 0,40,-+0,+...0,=n, and consequently fx will be equal to the denominator of
the last convergent above written, multiplied by a constant, so that we have now
c.frx=m,.m,...m,, where

‘ 1 1
M=go, M=o, F oo M=o, F
.nd as in the case previously considered, so long as

>1 >2 >2 >1
go, OT G, O g, O ..g, OF
<—1 <=2 <—2 <—1

JSx will have the same sign as ¢,.¢s,.--¢s,-
Let now 991=__t01 qe,,:icz---qep:icp’
where a=1 c¢=2..¢_,=2 c=1.

Consider any pair of the above equations as ¢2,—c;=0.

1st. Suppose all the roots of this equation are impossible, g2, —c} must be positive
for all values of x, and ¢,, can never lie between +¢; and —c;; moreover, since upon
the hypothesis made, ¢,-+c; and ¢, —c, always retain the same sign, viz. that of the
coefficient of the highest power of g,, it follows that g, must also always retain the
same sign; for if we construct the two curves y=g¢,+c;and y=¢,—c;, these will both
lie on the same side of the axis of x, and never cut the axis, consequently the curve
y¥=¢,, which lies between them, must also lie on the same side as either of them, and
never cut the axis.

Hence, then, if the roots of the equation are all impossible, g, will always retain
the same sign, and will never fall within the region bounded on its two sides by
+c; and —c,.

2nd. Suppose the equation to have one or more possible roots, and /; to the greatest,
and A, the least (which of course, if there is but one possible root, will be identical). If



494 MR. SYLVESTER ON A NEW METHOD OF FINDING

the leading coeflicient of ¢, is positive, the greatest root () of the equation g,—c=0 will
exceed the greatest root of () of the equation g,,-+c¢;=0; for between x=cc and x=/, g,,
must go through all values intermediate between co and —c;; hence there must be a
quality/intermediate between / and -0 , which will make g,,=c;. Inlike manner,if the
leading coefficient of g,, is negative, it will be seen that the greatest root of g,+c¢,;=0
will exceed that of g,—c,=0. Moreover, in the one case ¢; will be always positive
and greater than c;, and in the other always negative, and less than c;. In every case,
therefore, between 400 and [, g, retains the same sign, and does not fall within the
region bounded by --c; and —¢;; the same thing may be shown to be true for all
values of x between —oo and 2. Hence, then, by the same reasoning as that employed
in the preceding article, we are enabled to affirm, that if we form the equation

(g6, — (g, —4) (g5, —4) ... (g5, —9)(g5,— D=0, . . . . . . ()
its greatest root will be a superior limit, and its least root an inferior limit to the
roots of the equation fr=0,whatever be the value of the assumed function ¢x; and if
the above equation (+/.) has no real root, all the roots of fx will be imaginary.

Art. (54.). In the preceding two articles it has been supposed that all the quotients

are taken integral functions of x; but the process of successive division may be so
conducted as to give rise to quotients of the form

. . d )
a.x'+bx"‘+...+c—|—-a;+ W
Suppose then that we have in general

pr_ 1 1 1
Aot it

where ¢y, ¢, ... ¢, are each of the general form above written (but of course i and ¢'
being not necessarily the same for any two of the quotients), and suppose that the
sum of the degrees in x of g, ¢y, ... ¢, is n4-¢, where ¢ is essentially (as it must be)
positive. Then we shall find, as in the last article, that L and A being called the
greatest and least roots of (¢}— 1)(g3—4)...(¢2_,—4)(g2—1), D the denominator of the
last convergent to the continued fraction above written, will never change its sign
between + <o and L, nor between A and —co ; but here we shall have
Jr=Ka'x D,

Hence 2*.D will be invariable in sign within each of these two intervals.

Ist. Let ¢ be even; then f(x) will be invariable in sign, whatever L and A may be
for each such interval.

2nd. Let ¢ be odd; then if Lis >0 and A <0, f(x) cannot change its sign in either
interval ; but if L is <0 or A>0, fx will change its sign as « passes through zero,
but will be invariable for each of the three regions contained between +-co and L,
L and 0,0r 0 and A (as the case may be), and A and — co; so that universally L and
A will be a superior and inferior limit to the roots of fx, making abstraction of the
roots (if any such there be in fx) whose value is zero.

Art. (55.). I shall close this section with offering (for what it is worth) a bare
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suggestion as to the mode in which the theory of Intercalations may hereafter be
found to admit of being extended from a system of two general functions of z, to
a system of three general functions of &, y, four general functions of 2, y, z, and in
general to a system of ¢ general functions of e—1 variables, or which is the same thing,
of ¢ homogeneous functions of ¢ variables. In the case of two functions of @, f(x)
and ¢z, fr=0 and pr=0 may be considered to represent two systems of points in a
right line; and the theory relates in this case to the relative positions of these two
“ Kenothemes” or point systems; and of course using # and y to denote the distances
of any point in a line from two fixed points therein respectively, instead of fx and ¢,
we may employ two homogeneous functions of « and y, as f(x, y) and ¢ (z, y), to
denote these two systems of points. So, similarly, if we have three functions of two
variables, f(z, v), g(x, y), k(x, y), which I shall suppose to be of the same degree, we
may consider the mutual relations of the Monothemes, that is to say, the three plane
curves, denoted by the equations f(z, y)=0, g(z, y)=0, h(z, y)=0. Now every two
of these will intersect one another in a system of points, which we may call (f, g) for
the intersections of f and g, (g, k) for those of (g and 4), and (4, f') for those of 4 and
J. If we take any two of these systems of intersections, as (f, g) and (g, %), they will
both lie upon one of the given curves (g). And by reading off the two systems of
points (f, g) and (g, %), arranged according to the order upon which they are disposed
upon the curve g, we may, by following the course of such curve, form a scale of
effective intercalations for these two systems, and in like manner for the two systems
(g, k) and (A, f); (h, f) and (f, g). Now I believe that it will be found that when
J> g, h represent any algebraical curves consisting of a single continuous line, either
extending to infinity in both directions, or returning to itself (and I have fully satisfied
myself of the truth of this for the case of ellipses), each effective scale of intercalation
will contain the same number of pairs of points; if, however, the curves consist of
more than one branch, as if hyperbolae be considered, such is no longer necessarily
the case; from these facts, conjoined with the light thrown upon the subject by its
relation to the theory of combinants explained in the succeeding section, I am induced
to infer the probability of the truth of the following law (which, for avoidance of
further uncertainty, I confine to the case of functions of the same degree), viz. that
if f, g, h be three homogeneous functions of z, y, and z of the same degree, and if
U, V, W be any three linear functions of f,g,h, and if U=0, V=0, W=0 be treated
as the equations to three cones, and if we form an effective scale of the intercalations
of the lines of intersection of U and W, and V and W, according to the order in
which they are disposed upon W (which seems to require that the lines shall be con-
tinuous, in order to admit of a fixed order of reading off the intersections of any two
of them upon the third) ; then whatever value may have been given to the coeflicients
in the linear functions the number of elements remaining in any such scale will (as I
conjecture) be constant, and some theory (to be discovered) for three functions
analogous to that of Bezoutian residues for two functions will serve to determine the
MDCCCLIII. 3T
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number of the elements so remaining. And so, in like manner, but with a difficulty
increasing at each step (as at the next step we should have to pass into quasi-space of
four dimensions), a theory of intercalations may be conjectured to exist for any (n)
general functions of any (n—1) variables.

Development of the method of assigning a superior and inferior limit to the roots of any
algebraical equation.

Art. («.). Since the articles in the preceding part of this section on the method of
discovering limits to the roots of an algebraical equation were written, the method of
which the germ is therein contained has presented itself in a much more fully deve-
loped form, which I proceed to exhibit: for greater simplicity I shall suppose ¢x to
be of n—1, and fx to be of n dimensions in x, and that by means of the ordinary
process for common measure (except that as in StrurM’s theorem the sign of all the

remainders are changed)% has been thrown under the form of the improper con-

tinued fraction
1 1 1 1
h— = G
where ¢, ¢,...q, are all restricted to signify simple linear functions of .
Suppose the series g,, ¢,, ¢;, -..¢. to be resolved into the distinct sequences

91 92-++9i5  Givr Give-oGus  GooreoGpeeiQipreesses Gns
in such a manner that in each sequence as g,,, ¢;.,...¢, the coefficients of x have all
the same sign, but that in any two adjoining sequences the coefficients of x have
opposite signs, so that for instance in ¢; and ¢,,, the coefficients of x are unlike, as
also in ¢, and g;,,; there will of course be nothing to preclude any of these sequences
becoming reduced to a single term.

The first theorem is, that the greatest and least roots of the product of the cumu-

lants

(92 92+ X [Gi1 Giraee- o] o X (G2 G2+ 4]
are superior and inferior limits to the roots of fx. To prove this theorem I begin
with premising the two following lemmas, one virtually and the other expressly
contained in the Philosophical Magazine for the months of September and October
of the present year¥,

* Each of these two lemmata flows readily from the faculty previously adverted to engaged by every cumulant
of being representable under the form of a determinant. As to the second lemma, it becomes apparent imme-
diately when the cumulant is so represented, by separating the matrix into two rectangles and expressing the
entire determinant according to a well-known rule for the decomposition of determinants as a function of the
determinants belonging to these two rectangles taken separately. As to the first lemma, by reason of the cumu-
lant [w, w,..... wi—1 w; wi11] being so fepresex1table, we know that when [w, wgu.iwiy w]=0, [w, w,.... wi_;]
and [w, w,....w;+1] must have opposite signs. Suppose, now, that the theorem is true when the number of
elements in the type does not exceed ¢; then the roots of [w, w,...w;—;], say of Y;_;, being called %, A,....2i—,
and of [w, wy....wi—) wi], say of {;, being called &, k,...%; these may be arranged in the following order of
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Lemma A. The roots of the cumulant [¢,, g,...¢,],in which each element is a linear
function of x, and wherein the coefficient of x for each element has the like sign,
are all real, and between every two of such roots is contained a root of the cumulant
[9:9s.-.q:_1], and ex converso a root of the cumulant [¢, ¢;...q.], and (as an evident
corollary) for all values of ¢ and ¢' intermediate between 1 and ¢ the greatest root of
(91 ¢s+--qi—1g:] Will be greater, and the least root of the same will be less than the
greatest and least roots respectively of [¢, ¢,+1--.9y-1 9]

Lemma B. For all values of the elements ¢, ¢,...¢,, the cumulant

[qquHcQw—l q«: _(lu)+l qw+2° . -qn]
= [91 92- . ‘gm—-l q:.)] X [qw+l 9m+2' . .q”]

— [ ¢+ Guo-1] X [Gura---Ga)-
Thus ex. gr. the cumulant [abed |, i. e. abcd—ab—cd—ad+-1,
=[ab] X [cd]—[a] x [d]=(ab—1)(cd—1)—ad,
and [abede], i. e. abcde—abc— abe— ade— cde-+a-+-c+e=[abc][ae] —[ab][¢],
i. e.=(abc—a—c)(de—1)—(ab—1)e.

Art. (B.). Now suppose that ¢, 4,...q,, ¢,+...¢, are all linear functions of ,and thatthe
coefficients of  have all one (say the positive) signin ¢,¢,...q,, and all the contrary signs
in g,,..-¢, andlet L be not less than the greatest root of [¢,¢,...q,] orof [¢,4:...¢,],
and also let A be not greater than the least root of each of these same two cumulants ;
then by lemma A, L and A will also be respectively greater than the greatest, and
less than the least roots of [¢,¢,...q,_,] and of [¢,4s...¢,]. Now the coeflicient of
the highest power of x in both [g,¢,...q,] and in [¢, ¢....q._,] is positive, but as to
[Gos1--a] and [g,40...9,] is of contrary signs in the two, viz. negative in that one
of those cumulants which contains an odd, and positive in that one of the two which
contains an even number of elements. Hence by virtue of Lemma B, L. and any
quantity greater than L substituted for « will make [¢19....9,] to have always the
same sign, and in like manner it may be shown that A and any quantity less than A
substituted for x will also cause [¢, ¢,...¢,] to retain always the same sign. Hence
L and A are superior and inferior limits to [¢, ¢,...¢,] ; and the same reasoning would
magnitude &4, kohg kg .. ki—1 hi—1 ki ; and if the roots of [w, w,...wi—1 wiwii1], say of Yi41, be called 1, 4. ...y,
from the fact of the leading coefficients in ¢;_, and ;4 expanded according to the powers of # having the
same sign, it follows that when z=c0o, ;1 and ;4 have the same sign, but they have contrary signs
when #=%; but ¥;—, does not change its sign between =00 and =¥, hence Y+ does change its sign be-
tween =0 and #=£k,, and therefore a root of i1y lies between o and k,; in like manner precisely it may
be shown that a root of {4 lies between —co and £;; and since ¥;—, changes its sign between k, and %,,
between &, and %,.... k%, and between £;_; and %;, {;+; must likewise change its sign between one and the other
extremity of each of these intervals, and hence the roots 7, /,.... /4, are intercalated between o, £, k,,..... ki,
—w , or which is the same thing, &,, &, ....k; are respectively intercalated between 7, l,,...%:41; consequently,
if the theorem is true up to 4, it is true for i+1, and therefore true universally ; but is manifestly true when

i=2, for then #=+ o makes [w,, w,], 7. e. w, w,—1 positive; but w,=0 makes it negative, which proves the
theorem contained in Lemma A.

3T2
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evidently apply if we had supposed the signs of the coefficients of « in the first partial
series of elements to have been negative, and in the other series of elements to have
been positive.

The greatest and least roots of [¢, ¢s..-q,] X [§u+1---¢.] evidently satisfy the con-
dition to which L and A are subject, and may be taken in place of L and A
respectively. They will accordingly be superior and inferior limits to the cumulant

(01 G2e Qo Gusr+-Gu)-
Again, by virtue of theorem (B.) it may readily be shown that

[0 oo, Gorr Gtz - Gosr -+ G
=[¢:¢-9] X [Gorr1 Qurra-q@] X [Guyi1-+]
— (9192 G ] X [Gors2--Go,] X [Qops1+-q2)
—[9:92--9.] X [9w1+1---9w2—1] X [GuyraeGn)
0 go - Gor] X[ Qo] X [Guprae--gal 5
and hence if ¢, ¢,...q, are all linear functions of 2 in which the coefficients of « have
all the same algebraical sign in any one (taken per se) of the three series

9192905 Goyv1++2Go, 5 GogrreGns
but so that this sign changes in passing from one series to another, it is easily seen,
by the same reasoning as in the prcceding case, that the two positive and two nega-
tive products on the right-hand side of the equation all give the same sign to the co-
efficient of the highest power of x, and consequently that if L and A be superior and
inferior limits to

(g 00)s [Gorioouls [Gopsree-quls
and consequently by Lemma A, to

[91 92---%»1-—1]: [qm+2-"-qm;|: [qmﬂ---qw—l]a Ele+2---qw2—1]’ and to [9w2+2--~gn]:
Lor A substituted for « will cause [¢, ¢,...q,] to retain always the same sign, and
will consequently be superior and inferior limits thereto; and so in general ; whence
it follows, returning to the theorem to be demonstrated, that the greatest and least
roots of '

(92 o+ @] X [Gosr Givaer- @] X oo X [Guree ],
will be superior and inferior limits to the cumulant [¢, ¢,...¢,], i. e. to C.fx*, and
therefore to fx, as was to be proved.

¥ Xf %r expanded as a continued fraction by means of the common measure process gives rise to the quo-

tients ¢, go,++.qn and if Ly, Ly, ... Ly, Ly be the leading coefficients of the successive simplified residues,
(L being, in fact, the final simplified residue, i. e. the resultant to ¢z, fz), we must have pa=C[q,, ¢, .. .¢n]
J2=C[q,, ¢;...¢,], where (supposing ¢z to be of n—1, and f of » dimensions in z),
o=l L2 . L2_,.L2_, &ec.
Lo} Liey - Lacs - Lhs &e

n—"5 ‘
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Art. (7.). Thesecond theorem is the following : if ¢, ¢,, ...¢., be linear functions of
z, say a,x+b,, a,x+b,...a,x-+b,, in which the coefficients of x have all the same sign,

and if we take the quantities w,, f,,...%,,, all having the same sign as q, a,...q,, but
otherwise arbitrary, and make

1 1 1 1
k1={'°x k2=[1'2+;; k3={‘°3+;;"'kn—1=(bn—2+;":2 Itn=;;’

then the greatest of the quantities
k—b, kytdy  ka—b
2Tk L.

a, ’ a, an
say L, is a superior limit, and the least of the quantities
—ky—b, —ky—By  —ka—by
. e

n
b

say A, is an inferior limit to the roots of fx.

L and any value greater than L substituted for x will evidently make ¢,—#,;
g:—k,; ...; ¢.—k,, all of them positive.

Hence when = or >L ¢, is positive and >p, and

1 1 1 1 . . .y
q°“§;> k”_ﬂ>{b”+ﬁ;_ﬁ;’ t. e. is positive, and > p,,

1 1 1 1 1 . . .. .
Go— => k- ——-—, 1. e. 18 positive, and
g G 91> $ F'sz>{b3+l"e o’ P ? > fs,

1 1 1 1

1 . . .o
-— 2. €. 18 positive
Gn—1— Qn-2 §Q° pn-1 /"n-l’ P ?

and ¢,—

and consequently the cumulant [¢,4,¢s...¢,], which

=0 X ({I2 /30 X <93 92— 4 "

remains of a constant sign when L and any quantity greater than L is substituted
for . Hence L is a superior limit. In like manner A and any quantity less than

A will evidently make ¢,4+k,, ¢;+k,;; ... g.-+Fk, all of them negative, so that when
z= or <A ¢, is negative, and < —p,

1 1. .
Gy < k,—; is negative, and < —pu,,
1
1 1. "
&=z <k3-—;9 is negative, and < —ps,,
and LN P is negative
Wy S—— ave— — C .
In Gn-1— Qn-2 ¢ Pan-1 Pa- J
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So that [¢, ¢,...q,] for all values of z less than A will preserve an invariable sign,
and consequently A is an inferior limit to fx.
Art. (3.). It may be remarked that the quantities

1 1 1 1 1
s m+;;l; (bs+ﬁ;; T S I {»o,._1+;;_~2 B

may be derived successively from one another, according to the same law, from
whichever end of the series we begin.
If we take any two consecutive terms as

1 1
f'l"'+;‘:; (I'i+1+;‘_,

the effect of diminishing p; is to decrease the first of these two terms, and pro tanto,
. ey 1 . . .
to tend to deduce the limit; but on the other hand, - being increased, there is

brought into play an opposite tendency, which operates pro fanto to increase the
value of the limit.

Art. (). It is of importance to remark, that by a right selection of the system of
quantities g, p,...@,-,, which enter into the composition of %, %,...k,, L may be made
to coincide with the greatest root of [¢, ¢,...¢,] ; and so in like manner by a right
selection of another system of these quantities, whereby to form %, £,...%,, A may
be made to coincide with the least root of the same. Thus let p, w,...w,_, be so
chosen, that

¢—k=0 g¢,—k,=0...q,—k,=0

are all satisfied by the same value of z.

1 1 1
Then h=m 92=“°2+,‘[1 93=(bs+;;‘“97.=,;;:
exist simultaneously.
Hence =q,—~ —g—te—g L
i =1 N #s=1s /"2—93 %~ O
o1
Il‘h_l.—qnml-—q;m—z—‘ Gn—3 8}

which is satisfied by making [¢., ¢u-1y @ues...q,]=0.

It remains then only to show that the greatest root of x in this equation substituted
for x in q,, g, ... ¢, will make @, p,...,_, all of one sign, and that the least root of
similarly substituted, will also make them all of one, but a contrary sign, which may
be proved as follows.

We have

=G =g %] + ¢ =0 ¢ ]+ (90 ] &e. = ¢se--4a-r] +[q1s oo Gus] 5
and by Lemma B the superior limit to [¢, g,...q,] will be a superior limit also to
G1> 92 g+ ++> G2 20 to (92 ©2]s (92 %= 9] -+5 (91 Qv osfluni]-
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Consequently this superior limit will make w,, w,...,_, have all the same sign as
that of the coefficients of x in ¢,, ¢,,... ¢,. And in like manner, the inferior limit to
(415 s ... ¢.] Will cause w,, @, ... w,_, to have all the contrary sign to that of these
coefficients.

Thus then we see that when the coeflicients of x in the partial quotients to % ex-

pressed as an improper continued fraction form a single series of continuations of
signs, by a right choice of the arbitrary constants w,, w,, ... w,_, the superior or
inferior limit given by this new method may severally and separately be made to
coincide with the greatest and least real root, or each in turn with the sole real root
of fz, if there he but one.

Art. (Z.). The general method of enclosing the roots of fr within limits is founded
upon the combination of the two theorems above demonstrated. An arbitrary
function ¢x one degree in x below, fr being assumed, and by aid of the auxiliary
function ¢z, fr being thrown under the form

CLG1s Gos o Qi @is Gos «ooQy Gievnnnn (@15 (@)aeos (9)i]5

in which the coefficient of  is supposed to change sign in the passage from g¢; to ¢,
from gy to ¢¢, &c., a superior limit is found to each of the cumulants

(41 Go---q:)s (45 @905 - [(Dh (Do (D]

taken separately, by means of the second theorem, and then by virtue of the first
theorem the greatest of these superior limits is a superior limit to the cumulant

() @oerei ooi(@h-- (D]
and consequently to fx, and so mutatis mutandis the least of the inferior limits of the
same partial cumulants is an inferior limit to the total cumulant

[7:Gs- - Gi e (Do D (Do ]-

Art. (n.). When all the roots of fx are real, if px be so assumed that all its roots are
intercalated between those of fx, the partial quotients to % will form but one single
series. In order that gz may fulfill this condition, it is necessary that the coeffi-
cients of ¢x shall be subject to certain conditions of inequality, not necessary here to
be investigated ; but no conditions of equality, . e. no equations between the coeffi-
cients of ¢z, are introduced by this condition ; or in other words, the coefficients* of
gx, the auxiliary function, are independent and arbitrary within limits ; and we have
shown that in this case the auxiliary constants p, p,...,, may be so determined that
the limits may be made to come separately and respectively into contact with the two
extreme roots. When all the roots of fx are not real, the quotients (however ¢z is
chosen) can no longer be made to form a single series. It still however remains true,
that, by a due choice of the auxiliary function followed by a due choice of the

* It need scarcely be stated that f'z is the simplest form of @z, which satisfies the condition in question.
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auxiliary constants, this coincidence may be brought about, so long as there is a
single real root in fx. ~

It is rather important to demonstrate this universal possibility of effecting a coin-
cidence of the limits to the roots with the extreme roots themselves, because it is the
most striking feature which distinguishes the method of limitation here developed
from all others previously brought to light.

Art. (4.). Before entering upon this demonstration I may make the passing remark,
that every method of root-limitation is implicitly a method of reot-approximation.

For instance, let e be any given quantity between which and +-co it is known that

. . . 1 . 1
a root of fr lies. Then if we write ar::e—l-g, and form the equation y’f(e+?7>=0,
and find L a superior limit to y, it is clear that e+—L will lie between e and the root

. . s 1.1 . .
of fr say E, next superior to e. Again, making x=e+1-‘+§,, and finding a superior

. 1.1 . 1
limit L to 3', we shall have e+1+17 still nearer to E than e+, was; and so we may
proceed advancing nearer and nearer, and always from the same side towards E at

each step, and finally obtain E under the form e+%+£,+£—,,+ &c. And in like

. 1 1 1
manner calling E, the root next below e, we may find E,=e— x— 5—4m &c.

Art. (1.). In establishing the theorem of coincidence above adverted to, the follow-
ing notation will be found very advantageous. Let Q denote a Type of any number
of Elements, as ¢, ¢,...¢;_, ¢;, and let Q' denote this same type when the Jast element,
and 'Q the same type when the first element is cut off, and 'Q’ the same type when
both extremes are cut off, so that the apocopated type Q' will meun [g¢, ¢;...¢;_,] 5 the
apocopated type 'Q will mean [g, ¢s...q;], and the doubly apocopated type 'Q" will
mean [¢, ¢s..- G-, ].

If now a type Q be made up of the types Q, Q,...Q; put in apposition, and if we use
in general [Q] to denote the cumulant corresponding to the type Q, there will be a very
simple law* connecting [Q] with

[@][Q][Q]... [Qs] [Qn][]
[Q][Q) (4] .. [ica] [Q-i]
(][] [Que] [ ][]
[Qu][Q].. [Qia] [ ]
This law will be seen to be obviously deducible by successive steps of expansion

* The cumulant corresponding to any portion or fragment of a type may be said to be a partial cumulant to
the entire type, and a type whose elements are constituted out of the elements of two or more types placed in
juxtaposition may be said to be the aggregate of these types; the law given in the text above may then be
said to have for its object the expansion of the complete cumulant to any type in terms of complete and partial
cumulants to the types of which the given type is the aggregate.
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from the fundamental theorem given in Lemma (B.) art. (¢.), for the case of Q=Q,Q,,
and will be best understood by showing its operation in a few simple cases.
Thus let Q=Q, Q*.

Then [e]=[Q.]x[Q]—[2]x [].
Let 0=Q, Q, Q..
Then [Q]=[Q] X [Q:] X [2s]
=[] X [Q] X [2] =[] X [2] X [Q5]
F 2] X [Q] x ['Q].

Let Q=Q, Q, Q, Q,.

Then [Q] = [Ql] X [92] X [93] X [94]

=[] X [ Q] X [Q] X [Q] =[] X [Q] X [Q] X [2]—[Q] X [Q] X [Q] X [Q] +
H Q] X [ Q] X [Q] X [Q] =[] X [Q:] X [Q] X [Q] =[] X [Q] x ['Q:] x ['Q,]
=[x [ @] x[] x [l

and so in general if Q=0,Q,...Q,, [Q] may be expanded under the form of the sum of
2'-! products separable into ¢ alternately positive and negative groups containing

respectively 1, (i—1), (—1) Z—;~29 -++(¢—1), 1 products.

Art. (x.). In every one of the above groups forming a product the accents enter in
pairs and between contiguous factors, it being a condition that if any Q have an
accent on the right the next Q must have one on the left, and if it have one on the
left the preceding Q must bhave an accent on the right, and the number of pairs of
accents goes on increasing in each group from 0 to i—1. This rule serves completely
to define the development in questioni}.

* The sign of equality is employed here to denote the relation between a concrete whole and the aggregate
of its parts,

1 The number of distinct factors entering into these products, taken collectively, is evidently 74 2(:—1)
+(@E—2), 1. e. 4(i—1).

{ When each partial type Q consists of a single element, every doubly accented Q will vanish, and every
singly accented Q will become unity; hence we may derive the rule for the expansion of the cumulant
[@, a5 ay....0;] in terms of a, a,...4;, which will accordingly consist of '

1 (a,.04...04) 32— 1

@+ Oyl 0;—2 <
Q, . Oe+1 Gy« Qo1 X Op . Oft)

(@ .ay..... @) F&e.,

the indices e and f, e+ 1 and f, &c. being understood to be all distinct integers (which agrees with the known
rule for the expression of the denominator of a continued fraction in terms of the quotients). The number of
terms in this expansion, in consequence of the vanishing of the quantities affected with a double accent, reduces
from 2i=1 down to the ith term in the series commencing with 1, 2, 3, &c. defined by the equation u;+,=u;+ u;-,,
1 (1 + «/5)i+1 1 (1 - «/5)i+1.
WA T W\ 2
the number, therefore, of products in which double accents occur in the general expansion of [w, w,...w;] is
2i~—l__1_(1+ ,\/5)i+l _}_(1_ ,‘/5)i+l.
V5N 2 VH\ 2
MDCCCLIII. 3 U
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For greater brevity let [Q,][Q.]['Q.][Q:] be denoted respectively by w,, «., @,, @,
then when the type Q, consists of a single element,
w,=1 ‘w,=1 ‘'w,=0,
It should be observed that the two equations »,—=0 «,=0 cannot exist simultaneously,
for if Q, represent ¢,g,...q;,
W, =g, —w; w,=q;_ w—ay, &C.,
so that if »,=0 and »,=0, we have »:=0, »»=0, &c., and thus, finally, —1=0, which
is absurd.

Now, if we suppose Q,Q,...Q, to be types every element in each of which is a
linear function of x, the coefficients of x in these elements being positive in Q,, nega-
tive in Q,, and so on alternately, and Q is the aggregate of Q, Q,...Q,, it may easily be
made out that each term in the development of win terms of w,, @, w,, w, ; w,, @}, ‘w,, @} 3
&c. will have the same sign when we give to x a value which is a superior limit, or an
inferior limit to the roots of each of the cumulants w,, ,, ... w,, and consequently to
those of the cumulants «j,a,...0,; @, ‘wy... w,; @}, 'w), ... w,; the products affected
with positive signs being all positive or negative in themselves, and those affected
with negative signs being reversely all negative, or all positive.

Thus, ex. gr. if 0=Q,Q,

W= Oy =0} Wg,

and the sign of the leading coefficient in w, will be the contrary of that in w,, but «,
and »; have both the same positive sign; so again if Q=Q,Q,Q,,

WTRW) Uy Wy} Wy 0y — W) WY Wy 0 a0y,

where the leading coefficients in », and ‘w, have contrary signs, as have also those in
», and », between w, and ‘4, have the samesign ; and of course the leading coefficients
in w,, s, &, ‘@, have all the same sign, they being all positive, and so in general. But
the superior limit to the roots of any integral algebraical function of 2 substituted in
place of x causes the signs of the resulting values of the functions to coincide with
the signs of the leading coefficients, so that in the example last above given, L a
superior limit to all the factors in the several products in the equation substituted
for x will make w,.0,.0;, — . w;.05, —w,.w). w3, w, 'wy.'w, to have all the same sign. The
like will be true of A the inferior limit ; for if Q,, Q,, Q, contain respectively =,, n,, n,
elements, the values of the four products last above written, when £=— oo, will be
to the values of the same when 2=+ o in the respective ratios of

(_)m1+nlg+7rz,: 1 ; (_)m,+m,+m3—2: l ; (_)m1+m,+m3—2: l ; (_)m,+mg+ms-4: 1’

and so in general. Hence we deduce the theorem, that if the total type Q represent
the aggregate in apposition of the partial orders Q,Q,...Q, (the elements being under-
stood to be linear functions of z, which are subject to the law of alternation in the
-signs of the coefficients of 2 in passing from one partial type to another), no superior
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limit to ,, @, ..., can make » vanish unless each separate product in the expansion
of w in terms of w,, @, ...w, and the appurtenant apocopated cumulants vanish sepa-
rately.

Art. (A.). From the above theorem we may deduce the following law, viz. that if
the roots of w,, w,, ...w, be supposed to be arranged in order of magnitude, and A to
be that one of them which is nearest to 4 oo or to — oo, then if e is even it is im-
possible for A to be a root of w. Thus suppose e=2, and consequently v=w,.0,—w, ., ;
if A be a root of », and one of the two extremes of the roots of w,, », put in order of
magnitude, A cannot be a root of w,, for the roots of w, are confined between the roots
of w,; but if A make » and &, each vanish, we must have «.%,=0, hence »,=0 as well
as w,=0, which is impossible. In like manner if a root of », were the extreme root,
the same impossibility could be in like manner established.

Again, suppose e=4, so that

IR/ L. s/ /oo len! L / TN/ / U
_ 1 wl.w2 w2. ws w3. w4 wl.wz.wa wl.'w2.w3.w4 wl.wg.fwa.fw‘t wl.'w'z.'wg‘.f%
W=, Wy W5, 0, 1 — -— - -

W)Wy Wy Wg.Wy Wy .Wp.lg W)Wyl W3.W, Wy Wg. Wy W)Wy W3, Wy
Let A continue to denote one or the other extreme of the roots of w, », w, w,, We
must in each case, if A makes =0, have
Wy 0y 030, =03 & . 0.0,.0,=0; @ .0 w3.0,=0; w050 0,==0;
oy w,=0; @ 0.0 0,=0; w.ep @ w,=0; &. @ 0. '0,=0.
Now suppose that A is a root of ,, then the equations remaining to be satisfied are
Wy w50, =03 & . W w,=0; & . w0 0,=0; . 0o 9,=0,

Since , and w; cannot both be zero together, A cannot make &, or w, zero; and be-
cause A is an extreme to the roots of w,, #,, ,, A cannot make «;, or ‘@, or »; or ‘w, or w,
or ‘w, zero, so that in fact when x=x none of the singly accented quantities » can
be zero. As regards the doubly accented quantities », the same thing cannot be
affirmed, because if any Q contains only one element the corresponding value of «
with a double accent vanishes spontaneously. Again, any of the unaccented quanti-
ties » may vanish, because we may suppose any of these to have an extreme root A.
Consequently the first, second and fourth of the equations remaining to be satisfied,
night be satisfied on making the necessary suppositions as to the form of the quan-
tities » and the values of the extreme roots; but the third remaining equation
. w,.@,.'0,—0, in which only singly accented quantities » occur, remains incapable
of being satisfied on any supposition whatever. And the same thing would be true
if we suppose A to be a root of any other » instead of w,. Hence A cannot make =0
when e=4.

In like manner, if e be any even number 2¢, there will be an equation

@0y Wy Wy Oy W s gy 0y =0 ‘
to be satisfied by that value (if it exist) of « which, besides being an extreme (on
either side) of the roots of w,, w,, ... w,, arranged in order of magnitude, also makes
»#=0. Bat as such equation cannot be satisfied, neither extreme root of the roots of

3U2
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w.0;...%5 can be a root of w, as was to be proved. Consequently, unless ¢z is so
assumed that the number of changes of sign in the coefficients of x in the quotients
resulting from%f expanded as an improper continued fraction is even (for if the
changes from sequence to sequence are odd the number of sequences themselves is
even), the method of limitation in the text cannot give the means of drawing either
limit indefinitely near to one or the other extreme roots of fx.

Art. (w.). It now remains to prove the converse, and to show, 1st, that when the
number of changes is even, 7. e. the number of sequences odd, this coincidence can
always be effected ; and 2ndly, that it is always possible when fx has one or more
real roots, so to assume @z that the number of sequences shall be odd.

The first part of the proposition is easily proved. Thus suppose e=3, so that

D=0, Wy Wy — 0 Wy Wy — W) W Wy 0 W) Wy

If we suppose A either extreme of the scale formed by writing in order of magni-
tude, the roots of w,, @,, », to be a root common to », and to «, and if w,=0, which
last equation may be satisfied by supposing the type Q, to consist of a single element,
the separate equations

W) Wy 0y =0 @) . ' wy.0,—=0 @,.0).0,=0 &.w). w;=0

will all be satisfied; and so in general it may be shown without difficulty that if
e=2¢-}+1, and if A be a root common to »,=0 w,=0 &,=0...w,,,,=0, and if w,, a,, ... w,.
be all simple linear functions of z, so that consequently w,=0 @,=0...%,=0, each
separate term in the development of » will vanish singly and separately, and conse-
quently A will be a root of w: for since A makes »,=0 w,=0...w,,,=0, every product
in the developed form o, in which w,, w,, ...y, do not each bear at least one accent,
will vanish; and if we consider any product in which ), w,...w,,, are all accented, if
in any two of these immediately following one after the other as wy,_,, @y.,, an accent
falls to the right of the first, and to the left of the second, the intervening term w,,
will bear a double accent, and will therefore vanish, since 2, is supposed to be a
linear function of x; but it is impossible when every » is accented to prevent two
accents of contiguous odd terms in any such product, from falling to the right of the
left, and to the left of the right, term of the two, since the contrary would imply that
all the accents would fall to the right, or all to the left, which, as above remarked,
is impossible, on accoun of the two extreme terms being only simply accentable, z. e.
w, only to the right, and a,,., only to the left. Hence, when x substituted for A makes
@, Wy..05,, all vanish, and when w,, @, ..., are all linear functions of x, =2 will be a
root of w.

Art. (».). I believe that the remaining part of the proposition may be rigorously
demonstrated, viz. that when any of the roots of fx are real, and the number of odd
integers not exceeding the index of the degree of fx is m, and the number of imagi-

nary pairs of roots in fr is , x may be so assumed that the quotients to % expanded
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under the form of an improper continued fraction, may be made to take the form
Qs Qs Qg3 Qs vens Qi Where Q5 Q5 ... Q,; are linear functions of x, and ¢ is
any number assumed at will, not less than w, and of course not greater than m ; and
where »,; g3 ..., will have in common a root A, which may be made at will the
greatest or the least root of w,.w,.w,.»,,,; the investigation, however, according to
the present light which I possess on the subject, appears complicated and tedious,
and therefore, in order that the press, which is waiting for the completion of these
supplemental articles, may not be kept standing, must be adjourned to some future
occasion. For the present I content myself with showing the truth of the law for the
simple case where fx is a cubic function of .

Ist. If % gives rise to a single sequence of quotients Q, we know, from the theory

of intercalations, that it is necessary that all the roots of fx shall be real, and in order
that when this is the case the quotients may form a single sequence Q, it is only
necessary so to assume ¢x, that its roots may be intermediate between those of fx.

2nd. If the roots of fx are not all real, or if they are all real, but do not compose
the roots of fx intercalated between them, and if for greater brevity of ratiocination
we stipulate that ¢x shall have its leading coefficients of the same sign as that of the
leading coefficient of fx, the leading coefficients of the three quotients will either bear
the respective signs 4--—,or the respective signs 4+ —--, or the respective signs
4+ — —; in the first and last of these cases there would be two sequences, and there-
fore, by what has been shown above, the method of limitation of the text could not
give a limit coincident with a root. Let us then look to the remaining case, and
inquire whether, and how, ¢x may be assumed so that fx shall become representable
to a constant factor prés by the camulant [ p(x—a), —g(z—p), r(x—a)], where p, ¢, r
are all positive, and a is a root of f.

Let this cumulant be called Afx.

Nothing in point of generality will be lost if we suppose the leading coefficient of
hfx to be —1. We then have

hfe=[p(x—a), —g(x—B); r(r—a)]
= —pgr(@—a)’(x—b)—(p+r)(z—a)

j{:”a=m2+Bx+C and making x=a, we find from the above identity that

p+r=a+Ba+C, i.e. p=a’4+Ba+C—r,

and writing

and pgr(zr—pB)=z+4a+B,
hence B4+a+B=0, i.e. B=—DB—a,

1 1
and pgr=1, and .. = =g BatC—r

Hence if gz he so assumed that the quotients to %—“: are p(x—a); —q(x—PB); r(r—a),



508 MR. SYLVESTER ON A DEVELOPMENT OF THE METHOD OF ASSIGNING
we have
hor=[—q(x—p), r(x—a)]=—gr(z+B-+a)(r—a)—1
=—gr(m2+Bx-—a"’—aB)—l=—%{x5+Bx—a“’-—aB+p}.
Hence ¢(x) is of the form

m(2*+Br—a*—aB+(a’+aB+C—r))=m(z*+Br4C—r).
If we call the three roots of fx, a, b, ¢ respectively, we have
1 1
1= 1@+ Ba+C—n)~ r((a—b)(a—c)+7) ’

and since g and r are both to be positive, we see that () must be taken the greatest or
least of the three roots if they are all real, so that a’4Ba--C may be positive, which it
will of course necessarily be if 4 and ¢ ave imaginary ; we must also have ¢’+Ba+C—r
positive, so that the form of ¢z is m((2*—a®)+B(x—a)—¢), £ being necessarily posi-
tive, but otherwise arbitrary, a form containing two arbitrary constants, one of which
is subject to satisfy a certain condition of inequality ; whereas when fx is of such a
form as to admit, and qo(.:c) is supposed to be so assumed as to cause it to come to

pass that the quotients to &2 7o ” form a single sequence, then the three coefficients in ¢x

remain exempt from all conditions of equality but are subject to two conditions of
inequality. And so in general when the degree of fx is x and the number of sequences
2i+1, it is to be inferred that the = coefficients of g2 will be subject to satisfy n—i—1
conditions of inequality and ¢ conditions of equality.

Art. (2). The theory of the determination of the minimum interval between either
limit determinable by this method and the nearest root, or between the two limits

so determinable when ¢x is so assumed that % gives rise to a defined even number of

sequences (which will include the theory of the case where all the roots of fr are
imaginary), must be deferred to an opportunity more favourable for leisurely con-
templation. As regards the application of the theory to the very interesting case of
all the roots being imaginary, the principal point remaining to be cleared up is the
determination of the least value that can be assigned to the greatest, and the greatest
value that can be assigned to the least root of the algebraical product X,.X,.X;...X,,,
where X, X,,...X,, are all of them real linear functions of x, subject to the condition
that the cumulant [X,, X,, X,...X,,] shall (to a numerical factor prés) be equal to a
given function of the degree 2z in x incapable of changing its sign, which condition
implies, as a necessary consequence, that the coefficients of x in each of the terms
X1y X,,... Xy, must be affected with the same algebraical sign.

Art. (0.). It should be observed that in the application of the above method, the
division of the series of quotients into distinct sequences governed by the signs of the
cocflicients of « is introduced for the purpose of drawing the limits closer to the roots,
‘but is not necessary for the mere object of assigning limits.
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Thus, for instance, if there be two sequences so that

[‘11‘12---%; Qi+19i+2---9i+i']
Gi=p = (f/« +l>2 = (,w +1-)2. = (_1_)”
1 1 G LIPS 3 5T, ) 4 i

1 2 1 2
and i = = (1'2+v> oo o= (‘;—1>

1 v
the greatest and least roots of x deduced from these equations will be superior and
inferior limits respectively to the roots of fx; from which it is clear that if leaving
all the other equations unaltered, except those which contain respectively ¢; and ¢;.,,

we write in place of these
2 _1_>2
9= (§+I~"i—l

9?+1= (%+V1>2

the roots of the system of i+ equations thus modified will & fortiori be limits to the
roots of fx, but then the quantities

1 1 1 1 1 1
Ml,P2+E"" {J'm-l-,;;_:, E+f:«i—_—n’ V1+-g, ”2+;;: T

Vil—1
form the same single series as would correspond to the two sequences
G192 G; Givre o Givirs
treated as a single sequence, and the same is obviously the case for any number of

sequences¥*,
Art. (#.). If we consider a single sequence as ¢, ¢,...¢;, and write

=a,(x—¢,) g=a,(x—0,)...q,=a,(r—c,)

where a,, a,,..., a, are supposed to have all the same sign, and write
2 2 2 2 2 ]' 2 2 2 l ?
al(‘r_cl) = (12(.2;‘-—02) =<‘M2+I"—x) ~~-an(x"'cn) =<f"u—l)

* It follows from this, that if ¢,, ¢,,...q, be all linear functions of 2, and if

1)\2 1)\2 1
Q=(@i—(g—(m+ L)) (g (ut ) )oevoe(ii= o),
Hy e Mr-1
no root of Q can lie between the extreme roots of the function K, used to denote the cumulant
(Ve —Y@ Y s+ Vg,

the square roots being understood, to be taken so as to make the sign of the coefficients of « all of them positive ;
and from a preceding article we know that either extreme root of Q can be made to coincide with a corresponding
extreme root of K. Hence we have an @ priori solution of the following question, viz. “ To determine the (r—1)
positive quantities p;, fo, ... tp—1,50 as to make the greatest root of Q a minimum and its least root a maximum;”’
for the greatest root of K will be the minimum greatest root of Q, and the least root of K the maximum least
root of Q. Calling these respectively / and A, the two systems of values of p;, py,...pn—1 required will be
obtained by substituting respectively / and A for # in the equations

1 1 —
m=VE ==Vt =t V= = £ Vi
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it seems not unlikely that the interval between the greatest and least of the roots of
the above equations will be a minimum when the intervals between any pair is the
same for each pair, 7. e. when

+ 1 “ +l 1
&_F'e By 3 o Pt
o a4 — ag T T e

If we assume these equations, and write p,=a,%, the equation for determining £,
will be
| [a, ag, ag, ..., a,8]=0.
It n=2 this equation becomes @,a,4,—1=0.
If n=3, rejecting the factor &, it becomes

a,a,0.8 — (@, a,) =0.
If n=4 it becomes

a,.0,.ay.0, 8 —(a,.0,+Fa;5.0,+a,.a,)8+1=0.
If n=5, rejecting the factor &, it becomes
a,.05.05.0,.05 §'—(a,.0y. 3+ @,.05. 0,4, .0,.0,+ a,. @, . a.) 8+ (0, + a,4a;) =0,

and so in general the equation in £ being always of a degree measured by the integer
nearest to and not exceeding g; and it is easy to be seen that for all values of =, the

second coefficient divided by the first will be an inferior limit to £ (of course actu-
ally coinciding with it for the cases of =2 and n=3). Hence we have the following
valuable practical rule for finding a superior and inferior limit to the cumulant

[a,(z—c,), ay(x—0y), ..., a(x—c,)],
where a,, a,, ... a, have the same sign, viz. if C be the greatest, and K be the least of

the quantities c,, ¢,,...¢,, C4+A will be a superior, and K—A an inferior limit, A
being taken equal to the positive value of

Lyt L1
a0y ' ay.a5 ' ag.a, Qpy O

and it may be noticed that C and K are the quantities which would themselves be the
superior and inferior limits to the given cumulant if the series of terms a,, a,, ... a,,

instead of presenting only a sequence of continuations or permanencies, presented
only a sequence of changes or variations of sign.

SEcTioN V.

On the Theory of Intercalations as applicable to two _functions of the same degree, and on
the formal properties of the Bezoutiant with reference to the method of Invariants.

Art. (56.). If fx and ¢x be any two given functions of z of the same degree m, we
may form a system of m Bezoutics to f and ¢ (as shown in the first section), the
coefficients of the powers of &', ™%, ... 2' 2* in which will compose a square matrix
of m lines of m terms each, which will be symmetrical in respect to the diagonal
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which passes through the first coefficient of the first Bezoutic and the last coefficient
of the last Bezoutic; and we may construct a quadratic homogeneous function of m new
variables, such that its determinantive matrix shall coincide with the Bezoutic square
so formed. This quadratic form may be considered in the light of a generating function.
All its coefficients will be formed of quantities obtained by taking any two coeflicients
in one of the given functions, and two corresponding coeflicients in the other given
function, multiplying them in cross order, and taking the difference : each coefficient
of the generating function in question will consist of one or more such differences,
and will thus be of two dimensions altogether, being linear in respect to the coefficients
of f, and also linear in respect to the coefficients of ¢. This generating function I
term the Bezoutiant, and it may be denoted by the symbol B(f, ¢): the determinant
of B is of course the resultant to f, ¢, and the matrix to B is the Bezoutic square to
J> . Now we have seen that the decrease in the number of continuations of sign in
the series 1, B,(x), By(2)...B,(z) (where B,(z), By(z)...B,(z) are the (n) Bezoutics to
/> ®), as x changes from a to b, measures the number of roots of fx retained in the
effective scale of intercalations taken between the limits (a) and (8). If we take the
entire scale between 40 and —co the total number of effective intercalations will
be the same, whether reckoned by the number of roots of f or of ¢ remaining; for
these two numbers can never differ except by a unit, since no two of either can
ever come together ; but the number of each remaining in the effective scale will be
m—2i and m—27 respectively, ¢ being the number of pairs of imaginary roots and
pairs of unseparated real roots of f and ¢ being the similar number for ¢; so that we
must have i=7.

Now obviously this number becomes measured by the number of continuations of
sign in the signaletic series 1, (B,), (B,), ... (B,)), where in general (B,) denotes the
principal coefficient in B,(x).

But (B,), (B,), ... (B,) are the successive ascending coaxal minor determinants
about the axis of symmetry to the Bezoutic square; and accordingly the number of
continuations just spoken of, measures the number of positive terms in the Bezoutiant
when linearly transformed, so as to contain only positive and negative squares, or in
other words, measures the inertia of the Bezoutiant, the constant integer which
adheres to it under all its real linear transformations.

Art. (567.). This inertia is the same number as in the case of a homogeneous
quadratic function of three variables, used to express a curve referred to trilinear
coordinates, serves to determine whether such conic belongs to the impossible class
or to the possible class of conics, being 3 or 0 in the former case, and 1 or 2 in the
latter; or as in the case of a homogeneous quadratic function of four variables used
to denote a surface referred to quadriplanar or tetrahedral coordinates, serves to
determine whether such surface belongs to the impossible class or to the class con-
sisting of the ellipsoid and the hyperboloid of two sheets (which are descriptively

indistinguishable), or to the hyperboloid of one sheet, being 0 or 4 in the first case,
MDCCCLIII. 3x
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1 or 3 in the second, and 2 in the third. The most symmetrical (but least expeditious)
method of finding the inertia of any quadratic form is that which corresponds to the
method of orthogonal transformations, and is, in fact, the usual method employed in
geometrical treatises on lines and surfaces of the second degree. If we apply this
method to the Bezoutiant B considered as a homogeneous quadratic function of the
(m) arbitrarily named variables w,, u,, %;, ...u,, in order to measure its inertia, that
is to say, the number of effective interpositions between the two systems of roots, we
must construct the determinant

~d*.B . B #B *B
du? +2; duy duy®  duyoduy’ " duyduy,
B &’B A B a’B
dug.du,’ du§+ > dug.dug’ tt duy.duy,
DO)=< . + v v oo s
B a°B, a’B a’B N
Ldum.du,’ iy duy’ Aty ey """ dufn—'— J

All the roots of D(A) =0, as is well known, are real; the inertia of B, being measured by
the number of positive roots of D(—2), will be equal to the number of continuations
of sign in D(x) expressed as a function of A of the mth degree.

If in fr and ¢x we reverse the order of the coeflicients, and fr and ¢x so trans-
formed become f; () and ¢, (), it is obvious that the roots of f, and ¢, being the
reciprocals of the roots of f and ¢ respectively, the number of effective intercalations
to f; and ¢, must be the same as for f'and ¢. Accordingly we find that the form of
the Bezoutiant to f and ¢ is the same as that of the Bezoutiant to f; and ¢,, the sole
difference (one only of names) being that B(u,, w,, ... ,_,, u,) for the one becomes
Bty Up—sy --. Uy, u,) for the other. The equation D(A), which determines the inertia
of B, remains precisely the same as it ought to do for either of the two systems_f and
@ or f; and @,.

Art. (58.). The theory in the preceding articles of this section may be made to
embrace the case involved in Sturwm’s theorem ; for if

Jr=a,.2"+a,. 2"+ ... Fa,_,.2" +a,.2"
f’x:mao..i:”“+ (n—=1)a,.a" 2+ ... +a,_,,
Six=mfr—f'z

=a,. 2" '42a,.2"*+...+m.a,

the Bezoutian secondaries, or which is the same thing, the simplified Sturmian resi-

dues to fx and f'x, will evidently be the same as those to £,z and f'z. Accordingly, if
we form the signaletic series

and

fxlf,x) Bl’ BE"'Bm—l’
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where B,, B,...B,,_, are the Bezoutian secondaries to f,z and f'z, the number of vari-
ations of sign between consecutive terms in this series, when x is made 4o, will
measure the number of pairs of imaginary roots in fr; and fr and f'z forming always
a continuation, and the coefficient of f'(x) being supposed positive, we see that the
terms of the rhizoristic series will be 1, (B,), (B,)...(B,._,) consisting of positive unity,
and the successive ascending coaxal determinants of the Bezoutian matrix to /' and
JSix. Hence then the form of the Bezoutiant to f'x and fix will serve to determine the
number of pairs of imaginary, and consequently also the number of real roots to fz.
It should be remarked that the form of the Bezoutiant to f'x and fr, considered as
a quadratic function of w,, ,...u,_, and of the coefficients in f{(x), will remain unal-
tered when for fx we write fiz, for this will change the signs throughout of fz and
Jix, and consequently the coefficients in the Bezoutiant, which contain in every term
one coefficient from f'x, and one from fx, will remain unaltered in sign.

Art. (59.). It appears then from the preceding article, that for every function of 2
of the degree m, there exists a homogeneous quadratic function of (m—1) variables,
the inertia of which augmented by unity will represent the number of real roots in
the given function. Now this inertia itself may be measured Hy the number of posi-
tive roots of a certain equation in A formed from the quadratic function (in fact the
well-known equation for the secular inequalities of the planets), all whose roots will
be real. Hence then we are led to the following remarkable statement. “ 4nr alge-
braical equation of any degree being given, an equation whose degree is one unit lower
may be formed, all the roots of which shall be real, and of which the number of positive
roots shall be one less than the total number of real roots of the gwen equation.”

Let us suppose fr written in its most general form, the first and last as well as all
the intermediate coefficients being anything whatever : by reversing the order of the
coefficients f'x will become f,x and f,x will become f'z ; the Bezoutiant to fix and f'x
(which we may term the Bezoutoid to fx) will remain unaltered except in sign, and
the equation of the (m—1)th degree in A formed from the Bezoutoid remain un-
changed, consequently the equation in A enables us to substitute, for the purpose of
calculating the total number of real roots in f(z) in lieu of Sturm’s auxiliary func-
tions to f(x), another set of functions which remain unaltered when the order of the
coefficients is completely reversed, i. e. in effect, when we consider the number of real

roots offG) in lieu of those of f(#). And of course more generally the equation of

the mth degree in A formed from the Bezoutiant to any two functions fr and ¢z of
the mth degree each in x, supplies a set of functions for determining the total number
of effective intercalations between the roots of f(x) and ¢(x), which do not alter when

we consider in lieu of these, the roots of f G) and QDG) This substitution of func-

tions symmetrically formed in respect to the two ends of an equation for the purpose
of assigning the total number of real roots in lieu of the unsymmetrical ones furnished
3x2
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by the ordinary method of M. Sturm, bad been long felt by me to be a desideratum,
and as an object the accomplishment of which was indispensable to the ulterior deve-
lopment of the theory, and it is certain that I did not in anticipation exaggerate the
importance of the result to be attained.

Art. (60.). It may happen that the Bezoutiant to £ and ¢ (each of the mth degree)
may become a quadratic function of less than m independent variables, or the Bezou-
toid to f (a function in x of the mth degree) of less than (m—1) independent variables.
This will take place whenever f and ¢ have roots in common, or whenever F has
equal roots. The number of independent relations of equality between the roots of
JSand ¢, and the amount of multiplicity, however distributed, among the roots of F,
will be indicated by the number of orders thus disappearing out of the general form
of the Bezoutiant and Bezoutoid in the respective cases*. In what particular mode
the form of each would be affected according to the manner of the distribution of the
equalities and the multiplicity requires a specific discussion, which I must reserve for
some fature occasion.

Art. (61.). I shall devote the remainder of this memoir to a consideration of the
properties and affinities of Bezoutiants or Bezoutoids, regarded from the point
of view of the Calculus of Invariants. For this purpose it will be more convenient
hereafter to convert all the functions which we are concerned with into homogeneous
forms, and I shall accordingly for the future use /' and ¢ to denote functions each of
x and y, which I shall write under the form

1 m—1 a
S=a,.a"+ma,.z" Lytm——ay., .y a2

0=bp.a" +by. 2 g4 m. " b2 By,

In what follows a knowledge of the general principles of the Method of Invariants is
presupposed, but a perusal of my two papers on the Calculus of Forms in the Cam-
bridge and Dublin Mathematical Journal, February and May 1852, will furnish
nearly all the information that is strictly necessary for the present purpose. The first
point to be established is, that B, the Bezoutian of fx and ¢z, is a Covariant to the
system f, ¢ ; the variables in B being in compound relation of cogredience with the
combinations of powers of « and v,

‘Tm—l, mm—Qy_ ‘Z,m-—:) ym—l
/ N Y oo .

That is to say, I propose to show that if f, g, &, k be any four quantities, taken for
greater simplicity subject to the relation fk—gh=1, and if on substituting fr+gy for
x and hx+ky for y, f(z, y) becomes

m ——

1
ALy A,y say Gz, y),

Ay a"+mA, .2 y+m.

* T have elsewhere defined how this word order, as here employed, is to be understood. If F, a homoge-
neous function of @, @5, ....2,, can be expressed as a function of u,, u,, ...%,_; (all linear functions of Ty gyesedn),
F is said to be a function of n—i orders, or to have lost i of the orders belonging to the complete form.
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and ¢ (z, y) becomes
.Bo;x"‘—l—Bl..r’"“’.y—l—m.in«;lng""{y?—!—Bm.y’", say T(z, y),

and if B'(u}, u;...u,,) be the Bezoutiant to G and T'; B(u,, ,...u,) being that to f and ¢,
then, on making w,, u,...u,, the same linear functions of u;, u,...,,

as  (fatgy)™s (frt+gy)" (hwt+ky)s ......(frtgy) (het+ky)" s (hotky)™
are respectively of

m 2" Ly yn Tty y”,
B will become identical with B'. I was led to suspect the high probability of the
truth of this proposition concerning the invariance of the Bezoutiant from the follow-
ing considerations: 1st. That for the particular case where fand ¢ are the differential
derivatives in respect to 2 and y respectively of the same function F(z, y), the
Bezoutiant of f and ¢, which then becomes the Bezoutoid of F, determines the
number of real factors in F, which obviously remains the same for all linear trans-
formations of F. 2ndly. That taking f and ¢in their most general form, the invariant
to their Bezoutiant, i. e. the determinant of their Bezoutiant is an invariant of £ and ¢,
being in fact the resultant of these two functions; now as every concomitant (an in-
variantive form of the most general kind) to a concomitant is itself a concomitant to
the primitive, so it appeared to me, and is I believe true (although awaiting strict
proof), that any form satisfying certain necessary and tolerably obvious conditions of
homogeneity and isobarism, a concomitant to which is also a concomitant to a given
form, will be itself a concomitant to such form; this principle, if admitted, would
be of course at once conclusive as to the Bezoutiant being an invariantive concomi-
tant to the functions from which it is derived.

Art. (61*.). Since the publication of the two papers above referred to on the Calculus
of Forms, I have made the important observation that every species of concomitant,
however complex, to a given system of functions, may be treated as a simple invariant
of a system including the given system together with an appropriate superadded
system of absolute functions; thus an ordinary covariant involving only one system
of variables, as u, v, w ... cogredient with x, y, ... the variables of a system S, is in fact
an invariant of the system S combined with the system wx — vy, vz—wy, wr—uz, &c.,
u, v, w ... being treated as constants; so again a simple contravariant of S is an
invariant of S combined with the equation wx4-vy-+wsz4&ec.; so again, to meet the
case before us, a covariant to the binary system f and ¢ expressed as a function of
Uy, Us.. U, Where uy, u,...u,, are cogredient with ™7, 2”*.y...y""", may be regarded
as an invariant of the ternary system £, ¢, 2, where

m—1 ;
Q=u, y" ' —mu,. y" v +m.—5—us. y" 0 A (=)™,

(%, Uy, ... u,_, being here to be treated as constants), and accordingly the differential
equations which serve to define in the most general and absolute manner such cova-
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riant of £, ¢, or invariant to f, ¢, Q, say I, will take the form
- d d d d d d o d d
{(ao-ggl+bo‘gb—l') +2<a!';l;;+bl ?[[;2) +3(a2-%3+bz-:l'b—3) +... +'m(a %—;.—‘_b’"""m)

<

L

S d d d
{a,,,. kb dbm_11+2{a,,,_,. e L _}

d d d d
_ (u,g—%+2u2.%+3ua.‘%+ . .-I-(m—l)um_l.-@)}

A

+3{ Tps- da L }"‘ +m(“1 S raaldt db) > 1=0.

d d
( Uy, ' du,, +~u —2° d +3um -3 du +(m 1)”2-3{;}
-

-

These equations may be proved to be satisfied when I is taken =B, the Bezoutiant to
/> ¢, and thus B may be proved to be a covariant to f, ¢, but the demonstration is
long and tedious. An admirable suggestion, well worthy of its keen-witted author,
for which I am indebted to Mr. CavLEy, will enable us to prove the invariantive
character of B by a much more expeditious method.

Art. (62.). For greater simplicity begin with considering functions of a single
variable 2 ; and in order to fix the ideas, suppose (m) to be taken 5, and write

Jr=ax’+4ba'*+ca’+ dv*+ex -1
pr =o'+ Ba' 4 ya 4o fex A,
and let 5= M; this is of course an integral function of x and ', since the

numerator vanishes when x=x'; and we have by performing the actual operations,

oy f(aﬁ—bw)x & (ay S cw)d® 2® (x4 o) + (ad— da) Pa® (2 a4 x%) -|—(ae—ea)l
o [ xx' (2% +xx?+ 2%) + (ah— ) (o +2°2' -+ 2’ xa® 4 2) J
{(b'y— eB)a’a?+ (bd—dB)x*x*(x+a') + (be—eB) xa (2* + 2 -I—w'“)l
+ (bn—IB) (2 + a4 + v+ 2) J

-+ ((CB— dy)x’x*+ (ce—ey)xa! (x+a’) + (A —ly) . (*+ 22 +x’2)>
—I—((de—eE)xm’-{—(dA—lB)(x-{—x’))
+(en—1I);
and if we arrange 3 under the form
Ayt dt A 2t a A, , oA, 2t A, 2t
+A, . PrtHA, P LA, , 2 A, 2 FA,, 2
+A, a2 A, 2?2 A,, A, 2% A, 2t
+A, xx* FA s xd® A, a2 +A, 2 +A,
+A, 2t FA 2 A2 AT A

I=0
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it will readily be perceived that the matrix formed by the twenty-five coefficients,

viz.—
A4, 4 A4, 3 A4, 2 A4, 1

A4, 0
A, Ay Ay, A, Ay
As As A, Ay A,
A, A A, A, A,

Ao, 4 Ao, 3 Ao, 2 Ao, 1 Ao, 09

will be symmetrical about its dexter diagonal (that one, namely, which passes through
A, ,and A, ,), and will be identical with the Bezoutian square corresponding to the
system f, ¢; in fact, using the notation previously employed in the first section, it
becomes

1) (0,2) (0,3 (0,4 (0,5)

m2)ﬂom}[w@} oo
la'a) lars] L)
r051
(0@1! l[ } |
@) .. .. 0,3 4 L a4 2, 5)
| ]1

(2

0,5)) [, 5) 2, 51
o [90) (0] P2l
w4 @3 s 4)

0,5) (1,5) (2,5) (38,5) (45),

(r, s) being used in general to denote the difference between the cross products of the
coefficients of 2" and #*~* in f and ¢. Restoring now to m its general value, and
taking / and ¢ homogeneous functions of x and y, and making

Sz.f(nyW('x’:yl) f(' ' (x)y)
zy' —aly 2

we see without difficulty that
S=EAT’s{wr.ym—l—rx’snym—l-a},

where A, , is the term in the rth line and sth column of the Bezoutiant matrix to f
and ¢. This is the identification, the idea of which, as before observed, is due to
Mr. CaviLey.
Art. (63.). If, now, we consider the system of functions
J@, p)=ap.2"+ma, 2"yt .o +a,.y"
o(x, y)=by.a"+mb,.a" . y+........ +b,,,y"‘ |
Qz, Y) =ty Y —(M—=1) 1y y" " oiinnnen. (=) oy 2",
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evidently f(z, y)o(', ¥ )—f(@, y")o(x,y) is a covariant with f and ¢, and therefore
(which is a mere truism) with the entire system f, ¢, Q. So also is ay'—a'y, and
therefore 3, the quotient of these two, is a covariant to the system. Hence, therefore,
by virtue of a general theorem given in my Calculus of Forms,

(g -2

is a covariant to the system ; and again, therefore,

d d d d
g —aa)-2 (i —)°
is a covariant thereto. Now 3 is of (m—1) dimensions in z, y and also of the same

in 2, y'. Consequently this latter form will contain only the quantities u,, w,, ... u,_,,
and the coefficients of /' and ¢, so that the powers of z, y ; @, ¥' will not appear in it.

Now N=20 2 A, {2y Tty
(=10 (s, = ) =t () =t () o ()

" d d d\"! d\™?%d d\m-!
(—) lQ(@I} _Zy)zum—l(%’ +(m_1)um—2<;1?> "_{y—[—l"‘...—‘—ul(@) ,

ﬁ:f520<£7’ —'Jd;) Q(gg}‘, _c%' 3

=31, (A, )42 30 (A, ),

r and s being excluded in the latter sum from being made equal; but this latter
expression is the Bezoutiant to £, . Hence the Bezoutiant of f, ¢ is an invariant to
f> 9, &, i.e. a covariant to the system f, ¢, as was to be proved. The mode of
obtaining the covariant 3, used in this and the preceding article, is very remarkable.
I believe that the true suggestive view of the process for finding it, is to consider

S(@ y) -0, ¥ )=/, ¥)-o(, y)
as a concomitant capable of being expressed under the form of a function of & and «,
o standing for the universal covariant xy'—a'y ; 9 is then to be considered, not pro-
perly as a quotient, but rather as an invariant of the form 9., a function of @ of the
first degree, where ¥ is treated as constant.

Art. (64.). B is not an ordinary covariant of fand ¢, it belongs to that special and
most important family of invariants to a system to which I have given the name of
Combinants*, viz. Invariants, which, besides the ordinary character of invariance, when
linear substitutions are impressed upon the variables, possess the same character of
invariance when linear substitutions are impressed upon the functions themselves
containing the variables; combinants being, as it were, invariants to a system of

* For some remarks on the Classification of Combinants, see Cambridge and Dublin Mathematical Journal,
November, 1853.
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functions in their corporate combined capacity qud system. That the Bezoutiant
possesses this property is evident ; for ifinstead of fand ¢ we write kf4-ip and £/f+i'p,
any such quantity as a,.b,—a,.b, (a,, b, being coefficients in f, and a,, b, the corre-
sponding ones in ¢) becomes
(ka,+ib,) (K a,+i'b,)— (ka,+1ib,) (Ka,+i'b,), i. e. (ki —FKi)(a,.b,—a,.},),

so that B, the Bezoutiant, becomes increased in the ratio of (ki'—Z#'i)™, i. e. remains
always unaltered in point of form and absolutely immutable, provided that ki —k'i be
taken, as we may always suppose to be the case, equal to 1.

We derive immediately from this observation, the somewhat remarkable geometrical
proposition, that the intersections with the axis of x made by any two curves of the
family of curves w=nf(x)+pp(x), (f and ¢ being functions of x of the same degree)
give rise to a constant number of effective intercalations, whatever values be given
to A or p for the two curves so selected. _

Art. (65.). B(u,, u,, ... u,,) being a covariant of the system fand ¢, and u,, u,, ... u,,
cogredient with a™', ™%y, ... y"~, it follows from a general principle in the theory
of invariants, that on making u,, u,, ... u, respectively equal to the quantities with
which they are cogredient, B will become an ordinary covariant to fand ¢. By this
transformation B becomes a function of x and y of the degree 2(m—1) in x and y
conjointly, and linear in respect to the coefficients of f, and also in respect to those
of ¢. 'The only covariant capable of answering this description is what I am in the
habit of calling the Jacobian (after the name of the late but ever-illustrious Jacosr),
a term capable of application to any number of homogeneous functions of as many
variables. In the case before us, where we have two functions of two variables, the

Jacobian

af ~ de

dz’ de| df dp df dp

dy’ dy
We have then the interesting proposition*, that the Bezoutiant to two functions, when
the variables in the former are replaced by the combinations of the variables in the
latter, with which they are cogredient, becomes the Jacobian+. So in the case of a
single function F of the degree m, the Bezoutiant, i. e. the Bezoutoid to %, %, on
making the (m—- 1) variables which it contains identical with z™~*; 2" .y ; ... y™*

. . . . dF dF . . .
respectively, becomes identical with the Jacobian to T dy e the Hessian of F, viz.

@F  d°F
d2®’  dudy
eF  &F(
dady’ dyF

* T have subsequently found that this proposition is contained under another mode of statement, at the
end of Section 2 of the Memoir of Jacosr, *“ De Eliminatione,” above referred to.
t For a strict proof of this proposition see Supplement to Third Section of this memoir.

MDCCCLIII. 3Y
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As an example of this property of the Bezoutiant, suppose
S=ar*+ b2y +cay*+dy
p=ax’+pPaty+yay*+ oy’

The Bezoutiant matrix becomes
aB—ba; ay—ca; ad—de

ad— do

ay—ce; + 5 by—cB
ad—de; by—cB; cd—dy.

The Bezoutiant accordingly will be the quadratic function

(a8—be)ui+(ad — do4-by — cB)uz+cd— dyul
+2(ay— co)u, . uy+2(ad— do)uy . u, 42 (by — cB)u,. us,

which on making
‘ U= u=xy u,=y’,
becomes
La*4+Ma*y+Na*y* +Pey®+Qyt, . . . . . . . . . . (B)
where L, M, N, P, Q respectively will be the sum of the terms lying in the successive
bands drawn parallel to the sinister diagonal of the Bezoutiant matrix, i. e.

L =aB—ba
M=2(ay—cx)

N =3(ad—dx)+ (by—cB)
P =2(by—cB)

Q =cd—dy.

The biquadratic function in « and y (3.) above written will be found on computa-
tion to be identical in point of form with the Jacobian to f, ¢, viz.

(Bax®+-2bxy 4 cy®) (Br* 4 2yaxy +30y*) — (Bua®+ 2Bxy +vy®) (ba* + 2cxy + dy?),

this latter being in fact

3La*+4-3Ma®y+3Na’y* 4 3Pxy*4-3Qy*.
The remark is not without some interest, that in fact the Bezoutiant, which is capable
(as has been shown already) of being mechanically constructed, gives the best and
readiest means of calculating the Jacobian; for in summing the sinister bands trans-
verse to the axis of symmetry the only numerical operation to be performed is that
of addition of positive integers, whereas the direct method involves the necessity of
numerical subtractions as well as additions, inasmuch as the same terms will be
repeated with different signs. Thus if

JS=ax* 4 ba'y+cx’y*+doiy’ +exy -+ ly?

p=ax’+LBa'y +yr’y* o’y +exy*+ry°,
using (7, s) in the ordinary sense that has been considered throughout, we obtain by
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taking the sum of the sinister bands in («.)* for the value of B when we write
z, 2%y, 2™, xy®, y* in place of w,, uy, uy, u,, u;,
(0, 1)2°4-2(0, 2)a%y+(3(0, 3)+(1, 2))a%y*+(4(0, 4)+2(1, 3))ay*
+(5(0, 5)+3(1, 4)+(2, 3))a'y*+(4(1, 5)+2(2, 4))2'y"+(3(2, 5)+(3, 4))2%°
+2(3, 5)ay’+ (4, 5)y"
The direct process requires the calculation of
(5ax*+4ba’y 4 3ca’y*+2dxy’+ey*) (Ba* + 2ya’y + 30y 4+ ey + 5ry*)
— (bea*+4Ba"y +3ya’y®+ 20xy° +ey*) (bat +2ca’y 4 3da’y* + dexy® +5ly*),
each coefficient of which will contain the numerical factor 5; so that to reduce the
Jacobian to its simplest form each coefficient will necessitate the employment of
additions, subtractions, and a division, instead of additions merely, as when the

Bezoutic square is employed. For instance, to find the coefficient of z*.y from the
above expression («.), we have to calculate

2(25(0, 5)+16(1, 4)+9(2, 3)+4(3, 2)+(4, 1),

i.e. 3(25(0, 5)+(16—1)(L, 4)+(9—4)(2, 3)),

which is 5(0, 5)+3(1, 4)+(2, 3), agreeing with what has been found above for the
value of such coefficient, by a simple process of counting. The same remark will, of
course, also apply to the computation of the Hessian of F by means of its Bezoutoid.

(Art. 66.). This relation between the Bezoutiant and the Jacobian led me to
inquire whether, as would at first sight appear probable, the Bezoutiant were the
only linec-linear quadratic function of (m) variables covariantive to / and ¢ (the word
lineo-linear being used to denote the form of coefficients, such as those in the
Bezoutiant, linear in respect of the coefficients in f and the coefficients of ). If so,
then there would have existed a method of performing the inverse process of recover-
ing the Bezoutiant from the Jacobian, almost as simple as that of deriving the
Jacobian from the Bezoutiant. On investigating the matter, however, I found that
such is by no means the case-f, but that there exists a whole family of independent lineo-

* Vide art, 62.
+ This might have been concluded immediately from the following observation. Let J, the Jacobian of
f and @, be expressed under the form

Ap2m—24 (2m—2)A, .22~ 1.y 4 (2m—2) 2m—3

Aga?m—2 y24 .., +A2m_2.y2m—2,

2
then we know from the Calculus of Forms, that, D being taken to represent the persymmetrical Determinant
Ay A Ay el 3 Am—1
A Ay Ay s Am
Ay Ay A L 5 Am+r
An—y1; Am; Apsy; ooeee. ; Agm-—a,

3Y2
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linear quadratic covariants of m variables to every two homogeneous functions of « and
y of the mth degree. I have, moreover, I believe, succeeded in determining the number
of such lineo-linear quadratic forms for any value of (m), of which all the rest, in
whatever manner obtained, may be expressed as linear functions, the coefficients of the
linear relations moreover being abstract numbers; in other words, I have succeeded in
forming the fundamental or constituent scale of lineo-linear quadratic forms of » vari-
ables covariantive to f'and ¢ ; aresult of too great interest, as exhibiting the affinities of
the Bezoutiant to its cognate forms, to be altogether passed over in silence. Supposing
the number of linearly independent forms of the kind to be », then speaking & priori
any of the forms taken at random might seem to be equally eligible to form one of
the v included in the fundamental scale, combined with any (»— 1) others independent
inter se, and of which the selected one is also independent. In fact, however, this is
not so; for it will always be more satisfactory to contemplate the fundamental scale of
forms as generated successively or simultaneously by a uniform process; and in the
case before us, the process which I have hit upon, and which I believe is the simplest that
can be employed for generating the fundamental scale, will be found not to include
directly the Bezoutiant among the number. There will thus arise two subjects of
inquiry ; 1st, the mode of forming the fundamental scale, and proving its fundamental

D=0 is the condition to be satisfied in order that J may be representable under the form of the sum of the
squares of (m—1) linear functions of # and y, and D itself is an invariant to J, and consequently an invariant
and (as is obvious from its form) a combinantive invariant to f and . Moreover, which is more immediately
to the point, we know that the quadratic form Q

(Aou%'l‘ 24, (v, . (m—1)uy) + Az{((m_ 1)uy)® +2u, . (W) ”3}"' &e.+ Azm—?“fn)

will be an invariant to f, ¢ and & (this last quantity Q being defined as inp. 524), and a combinantive covariant
to f and ¢ in the same sense precisely as the Bezoutiant is a covariant to the same, and like the Bezoutiant
is lineo-linear in respect of the coefficients of f and ¢. If we operate with the symbol E, where E represents
d d .
— U
dA, dAgm—a ™
upon K any invariant of £ and ¢, we shall obtain E.K, a quadratic function of v,u,...v,, which by the rules of the

d d
24 Qd—A-l LU+ m(u%-l—?vl L)+ &e. +

Calculus of Forms we know will be a contravariant to fand @, and the matrix corresponding towhich must evidently
be persymmetrical. It isan interesting subject of inquiry, which I reserve for some future occasion, to determine
the Co-bezoutiant, the Discriminant of which must be employed for K, so that when this discriminant is operated
upon by E, the matrix corresponding to & .K may become identical (term for term) with the matrix which is
the inverse to the Bezoutiant matrix, which inverse, as Jacosr has so simply and beautifully demonstrated,
possesses this persymmetrical character. Vide the ‘“De Eliminatione,” section 5. The investigation of the
arithmetical connexion between the Q of this note and the fundamental Co-bezoutiants must be also similarly
reserved. I believe it to be generally true, and have verified the fact for the case of two cubic functions, that
E.Q gives a quadratic form such that the corresponding matrix is the inverse to the matrix of Q. The calcu-
lations necessary for extending the verification of this remarkable proposition for functions of z, y exceeding
the third degree (notwithstanding that they are much abbreviated by the application of the rules of the cal-
culus) still remain excessively laborious. The abbreviation alluded to consists in confining the verification in
question to the comparison of either one of the two unreiterated terms at opposite corners of the matrix to
E.Q with the corresponding term in the inverse matrix of Q ; if these coincide, it is easy to prove that every
other pair of corresponding terms in the two matrices must also coincide respectively with one another.
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character; 2ndly, determining the numerical relations which connect that very im-
portant form, perhaps of all of its kind, the most important with the forms comprised
in the fundamental or constituent scale. These questions I propose to consider more
fully at a future period. For the present I shall content myself with giving a method of
forming the constituent scale (without, however, seeking the proof of all the forms
extra to such assumed scale being linear functions of these comprised within it), and
with determining the numerical relations between the forms in this scale and the
Bezoutiant for a limited number of values of m. All the forms which we are seeking,
besides being lineo-linear quadratics, must also be combinantive invariants to f and
¢, remaining (as forms) unaltered for any linear substitutions impressed either upon
the variables or upon the functions containing the variables.

Art. (67.). I must here premise that if there be any two forms of the same degree
(and that degree odd) in £ and , a combinant may be formed from them, which will
be linear in respect to each set of coefficients*. Thus calling the two functions

2
ay. 2" +(2n41)a, .xQ".y+(2n+l).—27-La2.w2"“ BTt S o/ A Vi

2
o™+ (204 1), .2y + (2n+1 )§w2.x“’”‘l B ST T N | L

the lineo-linear combinant in question will be

Tz{ao.a%,,l—- (2n+1).a,.0,,+ (2n41)2n a,.0,_,+ (@t 1)1(.2;?;2”—1)&300%_2 &C. — @y iq.00 &c.}

which, using our customary notation, will be of the formn

(Qn—l— 1)2n (2r+1)(2n)(2rn~—1)...(n+2)

(0, 2n-+1)— @u+1)(1, 20)+ 2522, 2 1) btee (o) PENER AN,y

As a corollary to this proposition (which, as well as the proposition itself, will be
needed for the purposes of the ensuing determination), taking any function of an even

. . ., . dF dF .
degree in x, y, F(z, y), there will exist a combinant to and Pt by virtue of what

has been stated above, which will be Mr. CavrLey’s well-known quadrivariant to F;
viz. if F=aq,.2"+a,.2" '+ ...+ a,,.2™, this will be

2n(2n—1) 2n{2n—1).. (n+l) 2.
2

az-azn—2+--'+;:(—)n' 1.2..

Q. 0y, — 200, . Ay}

The proposition itself is easily proved ; first, the expression T being expressed entirely
in terms of quantities of the form (r, s) remains unaltered for linear substitutions
impressed upon the forms fand ¢; it remains then only to show that T satisfies the
differential equations to T treated as a mere invariant, viz.—

* I may add here incidentally (although not wanted for our present purposes) that as a combinant in which
each set of coefficients enters linearly can always be formed to a system of functions 2 in number of as many
variables and of any odd degree, so reciprocally can a combinant in which each set of coefficients enters linearly
be always formed to a system of functions each of the degree 2, of which and of the variables contained in
them, the number is any odd integer.
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d d d d
a”'t—ia_1+2a‘ 'Ezz—g+3a2'%;+"'+(2n+l)a2”'d_a;:1 T—o
d d d d -
+“°'a’71+2““ .E+30¢2.d7£;+...+(2n+l)w2n.d_~a2“+l
and

d
a2n+1-g;—+ om * da + +(2n+l)al da

d
B ol du + Cgpe g da + +(2n+1)“1 “dag

From the hemihedral symmetry of T, which only changes its sign when the order of
the coefficients in f and ¢ is simultaneously reversed, it is obvious that one of these
equations cannot be satisfied without the other being so too. Looking then exclu-
sively at the first of them, we see that this is satisfied by virtue of the equations

ia(,d (@0t ez — }T 0

d 1
{2&,.%—2+2n.u2ﬂ_1.@} I'=0

{ert)agitaglr=o0.
Hence then the differential equations to T' being satisfied proves that it is an inva-
riant, and, as above observed, its form shows upon its face that it is a combinant.
Precisely in the same way it may be demonstrated, that to two functions each of

the same even degree (2m) as

2m 2 1
a, 0"+ 2ma, . 2 + ( m— )

2 2 ay, R
and wo.m“’”‘—l—Qmwl.m2"‘*’.g/+2m.“—Qw—-%.xz"‘”?.yz—l-...+a2m.y2

there will be a quantity

m.(2m—1)
G—-ao Ol —2M Ay 0Ly, 1+“~—“2 Ay oy T &C. — 200, gy + 2y .

which, although not a combinant, will satisfy the differential equations necessary to
prove it to be an ordinary invariant to the two given functions.
Art. (68.). Now let us consider the three forms £, ¢ and the subsidiary form

J=ax"+ma,.a" " y+.. . +a,.y"

p=b.x"+mb,.a".y+...+b,.y"

Q=u,.y""'—(m—1)u,.y"*. e+ &c. +(—)ar'a™",
where u,, u,, ... u,, are to be treated as constants.

(2Z+ 1 2i+1
Make 2:+1 f'—m(m-— 1) (m—22 (de ”d:l/) f
(22+1 241
Eisie ¢—m(m-— 1). — 2) (de_l_”dy)
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¢ being any integer such that 2¢+41 does not exceed m, and now consider
Eyii. /s Euyy.@ as two functions of the degree 2i+1 in £, » (x and y being regarded
as constants) ; and by virtue of the formula in the last article, form T, the lineo-linear
combinant of E,.,.f and E,,,.¢; T, will then be lineo-linear in respect to the

coefficients in f and ¢, and of the degree 2(m—(2i+l)) in respect to x and y.
Again, let

1.2...2i d | d\®
m(m—l)...(m—2z'+1)'<‘§EE+”@> Q2.
E,.Q treated as a function of £ and 7 of the degree 2¢ will furnish a quadrinvariant
Q; of the degree 2(m—1—2i) in respect of x and y, and quadratic in respect of the
system w,, u,, ... #,. We have thus two forms, T; and Q,, each of the same even

E.Q=

degree (2m——(2i—|—1)) in respect of z, y. Forming between these the lineo-linear

invariant G,, G, will be a function lineo-linear in respect of the coefficients of
S and ¢, and quadratic in respect of the system wu,, w,, ... u,. Moreover, G; will
(by the general principle of successive concomitance) be an invariant in respect to
the system f, ¢, (2, and combinantive in respect to f and ¢. Thus then G; for all
admissible values of ¢ will belong to the family of forms to which the Bezoutiant is
to be referred.

It requires to be noticed, that when ¢ is taken (0), so that T, and G, are of the
degree 2(m—1), E, for this case must be taken equal to Q7 which evidently fulfills
the required conditions of being of the degree 2(m—1) in («, y), and quadratic in
respect of the coeflicients of . If, now, m be even, we may take for 2i41 suc-
cessively all the odd numbers from 1 to (m—1) inclusively, and there will be

g forms G;; when m is odd we may take for 2¢41 successively all the odd numbers

m-+1
2

when m is odd and 2i41=m, T; will become identical with the lineo-linear combinant
to f and ¢ and Q; with the quadrinvariant to 2 ; and no power of  or y will enter into
either, so that G, will become simply T, XQ,. I am now able to enunciate the
proposition, that G,, G,, ... Gm_] , when m is even, and G, G, ... G,,._,, when m is odd,

2 2

from 1 to m, and the number of forms of G; will be . It should be observed, that

form the constituent scale of forms, of which the Bezoutiant and all other lineo-linear
quadratic functions of m variables, which are combinants of the system f, ¢, will be
numerically-linear functions. I propose to term the members of this scale Co-bezou-
tiants.

As regards the present memoir, I shall content myself with exhibiting a partial
verification of this law as regards the connection of the Bezoutiant with the G scale
of Co-bezoutiants, and a complete determination of the numerical multipliers which
express this connection for the cases comprised between m=2 and m=6 taken in-
clusively. It is impossible to predict for what ulterior purposes in the development
of the Calculus of Invariants these numbers may or may not be required, and it seems
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to me desirable that a commencement of a table containing them should be made
and placed on record. The remaining pages of this memoir will accordingly be
devoted to the ascertainment of them.

The theory of the Bezoutoid being included within that of the Bezoutiant, need
not hereafter call for any special attention ; I may merely notice that the Bezoutoid

to a function of the degree (m) will be a numerico-linear function of Zn—gé of the G’s

if m be odd, and 1_73-2_:{ of the G’s if m be even.

It will be more convenient hereafter to denote the G’s as G,, G, G, respectively,
in lieu of G,, G,, G,, &c., and to continue at the same time to give to the T’s and
Q’s the same subscripts as the corresponding G’s.

Art. (69.). 1st. Suppose m=2,

S=ax® 42bxy+cy’
p=ar’ +2Bxy+yy’
Q=u,.y —u,.x.

E,.f=(ax+by)s+(bz+cy)n
E,.0=(a2+8y)s+(Br+7y)n
T'\=(az+by) (Be+yy) — (br+cy) (ex+Ly)
=(aB—ba)r’+ (ay— ca)xy+ (by — B)y*
Q= =uly’—2u,.uxy +u3. 2*
and 5o Gy=(aB—be)ud+ (ay — co)u,uy 4 (by — c8)uil.
Let us now form in the usual manner the Bezoutiant to f, ¢; this is the
quadratic function which corresponds to the matrix

(2aB—2be) ;  (ay—cz)
(ay—cz);  (2by—ep) |
i. e. 3B=(af—bayi-+ (ay —cw)u,.u,+ (by— B)ui=G, or B=2G,.

Then

2nd. Suppose m=3.
JS=ax’+3b2’y+3cxy’+ dy®

p=ax’+ 332’y +3yxy*+ oy

Q =u,y*—2u,.yx+u,.2°
We have then

E,.(f)=(ax®42bxy+cy* i+ (ba*+2cay +dy*)n
E,. (p)=(e® 42y +7y")5+ (82" +2yay +3y*)
T\=(a+2bxy + cy”) (82" +-2yy +3y") — (ba*+2cxy 4+ dy) (wa®+2Bxy + )
= (aB—be)a*+2(ay—cx)2%y +(3(By — ¢B) + (¥ —du) ay* +- 2B — dB) 2y + (S diy
Q=0 =uwy* — v, 0, Y u~+ (45420, 1, )y *2 — 4wy uyya® +u 2k,
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Supplying for facility of computation the reciprocals of the binomial coefficients to
the index 4, viz.—

we obtain

Gi= (aB— by +-2(ay — cayu, uy+ (2 (by — o) +2(@d — dir) )i

+((By— ) 43 (@ — ),y + 2 (B — dB)aty ty+ (cd— dly o

It will here and henceforth be more useful to employ [r, s] to denote, not the
difference of the cross products of the (r4-1)th and (s41)th entire coefficients in
JS and ¢, but the difference of the cross products of these coefficients divided each by
its appropriate binomial coeflicient. We may then write

G,=[0, 17u+2[0, 2Ju,.u, 4 ([1, 2] 4300, 8])uy.ue+ (2[ 1, 2]+2[0, 3]).22

+2[1, 8Ju,.u,+[2, 3]ud.
Again,

G, = {(ad—dw) — 3(by — ¢B)} + (u, . u;—u3) = ([0, 3] —3[ 1, 2]) (u,us) — ([0, 3] —3[ 1, 2] )ucl.

Hence

G,—%G;,z[o, 1]ui4-2[0, 2w cuy+4-2[1, 2]u,.u,+ ([0, 3]+ [ 1, 2])ui+2[ 1, 8Juy.u,+ [ 2, 3w

But, again, the Bezoutiant of f, ¢ corresponds to the matrix

3[0,17; 3[0, 2] ; [0, 3]
3[0, 2] ; [0,3]+9[1, 2]; 3(1, 3]
[0,3]; 3[1, 3]; (3, 4].

Hence summing the sinister bands to form the coeflicients, we have
B=3[0, 1]u;+6[0, 2]ui.u,4(3[0,3]+9[1, 2])ed+6[1, 3Ju,.u,+[2, 3]ui=3G,—G,.
3rd. Suppose m=4,
JS=oax'+4bx*y +6ca’y*+ Adwy® + ey
=ax'+4Bx°y + 6ya’y*+ 40xy° ey
Q=u,y*— 3wy’ v+ 3u,y2’* —u,.2°.

Then
E,.f=(ax+by)&+3(ba+cy)&n+3(ca+dy) e+ (de+tey)r,
T fzj(aw+by)(5w+sy) 1_3{(bm+cy)(7m+3y) }
= (e tBy) (detey)] = (Brtoy) (catdy)
. =([0, 3]—=3[1, 2Da*+ ([0, 4]—2[1, 8])ay+([1, 4]—3[2, 3])»*

Q, = (u,.y —uy) (Ul — 2,2 ) — (Upy — uy)?

= (u,. Ug— U3)y" () U — Uty Y - (U U= 13) %,
MDCCCLIII. 3z

3
29
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Hence supplying the binomial reciprocals

we have
G,=([0, 3]—3[1, 2])(u1.u3—u§)+%([0, 4]—2[1, 8]) (v, .00, — . 05)

: +([1, 4]-3[2, 3]) (w0, —153).
Again,

Ty=(ax*+3baz’y +3cd¢y2+ dy®) (Ba®+3ya’y -+ 3dxy>+ey)
— (wa® + 3B’y +Byay’ +0y°) (b’ + 8ea’y+ 3dxy* + ey’
=[0, 1]2°4-3[0, 2]a*y+(3[0, 3]+6[1, 2])a*y*+ ([0, 4]+8[1, 3])x*y*
+ 1, 4]-+6[2, 3)ay+3[2, 4Jay'+ [3, 410",
and Q,=Q° | ’
=ul.y’ —6u,. %, 2’y 4 (95 6u, .2y a* — (2u, ., + 18uy . 100) 2y
+ (954 6u, . u,)y 0t — 6u,. u, ya2® -l 28,
Hence, supplying the reciprocal binomial coefficients,

1 1 1 1 1
1 5 T8 +i§ H —30 H 15 3 —5; 15

we find
G,=[0, 1]w3+3[0, 2]u,.u,+ (%[O, 3]—}-%[1, 2])(9u§+6u1.u3)
+<%[o, ] +55[1, 3]>(u1.u4+9u2.u3)+ (%[1, 4]+2[2, 3]) X (9u6u,.u%)
+3[2, 4]us.u,+[3, 4]u;.

Now the Bezoutic square, taking account of the binomial factors in # and ¢, may be
written under the form

4]0, 1]; 6[0, 2]; 4[0, 3]; [o, 4]
4[0, 3] [0, 4]
005 | o] L] 10

[’ s -
410,31 [+12[i]3]]; [+5£§3ﬂ; L2 4]

[0,4]; 4[1, 4]; 6[2, 4] ; [3,4].
Hence the Bezoutiant B becomes
4[0, 1]e}+412[0, 2]u,.u,4(4[0, 3]4-24[1, 2])us+2[0, 4]u,u,
+(2[0, 4]+382[1, 8])uy.uy+8[ 1, 4wz ue,+([1, 4] +24[2, 3])ul
+12[2, 4]us.u,+[3, 4]
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And we ought to have B==¢G,4-eG;,, to satisfy which equation we must manifestly
have ¢c=4; to find (e), compare the coeflicients of u3, this gives

36 72
40, 3]+24[1, 2]="010, 3]+ 201, 2] +e(3[1, 2]—[0, 3]);
accordingly we ought to be able to satisfy the two equations

2, .
—5-—6=4 ?+5€——24,

each of which accordingly we find is satisfied by the equality 6:%(3‘.
Substituting in the equation for B above written, we thus obtain
B=4G1+1_5§G39

which will be found to be identically true.

Art (70.). We may now see our way to a more concise mode of obtaining the
numerical coefficients [by which they may in fact be computed and verified with
comparatively little labour |, connecting the Bezoutiant with the co-bezoutiant forms of
the constituent scale. It will not fail to have been remarked, that throughout the pre-
ceding determinations I have presumed the truth of the formula which admits of an
immediate verification, that for all values of m and » we have the identical equation

d d\® -1
(Ecﬁ'l'”d_y) .{com’”+mclx’""y+m.@z—c2w"“"’y2+ vt me, y2" " ¢, ™ }

e L I A

where

—_——1 9
Ly=c,.a" 4+ (m—w)c,.a" " . y+ (m—m)nLg-—c2.w’"“"“2.y2. N /L

m—w—1

L,=c,.a" 4+ (m—w)c,.a" " .y + (m—w) 5 G " Y a1 Y

L,=c, .x";““’+ (m—w)c, , ™y (m-—w)m_;_lcz.wm‘""2.y2.. Ay

Let us now proceed to determine by an abridged method the linear relations corre-
sponding to the cases of m=>5, m=6, and first for m=5.
Let
Sf=ax*+5bx'y+10ca’y’ + 16dxy’ +5exy' + by’
p=ax’+ 56"y 4+ 10yay>+ 1002+ sexy* 47y
Q=u,.y* —4u, .y’ 4 6u,.y*2" — 4u,.y2*+u;.y".
In forming G;, Gs, G,, let us confine our attention to the terms u}; u,.u;; u,.u,.
3z2
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A comparison of the coeflicients of these with those in the Bezoutiant (B) will be
sufficient for assigning the three numerical quantities which connect B with G,, G,, G,.
I omit u,.u,, because G, is the only one of the G’s for any value of (m) which con-
tains «} or u,.u,, and in G, the terms containing «? and u,.u, are

[0, 1]ui+4(m—1)[0, 2] .u,.us,
and the corresponding part of the Bezoutiant is

m[0, 1]ui+m.(m—1)[0, 2]u,.u,;
so that if we write

B=¢,.G,+¢,.Gy+¢;.G;+ &e.,

the two terms u} and u,.u, will only enable us to form one equation with the ¢’s, viz.
c,=m. Again, instead of considering the entire coeflicients of u,.u, and u,.u,, it will
be sufficient to take a single argument of either of these coefficients (in the forms to
be compared), as for instance [0, 3] and [1, 8]. Then ¢, being known, ¢, ¢, will be
determined ; but for the purposes of verification I shall furthermore compute the
whole of the coefficient of w,.u,.

Accordingly [calculating the G system in reverse order] we have
G,={[0,5]—5[1, 4]4+10[2, 3]} {w,.u;—4u,.u,+.3u3}
={[0, 5]—5[1, 4]+10[2, 8] }u, us+...
E,.f=(ax’+42bxy-+cy®)5*+3(ba* 4 2cay 4 dy*) -+ 3(ca*+-2duy 4 ey®) g 4 (d*+- 2exy+1fy")n ;
E;.0= &c. &c.;
Ty={(az*+2bxy +cy*) 02"+ 2eay +7y*) — (e’ + 2By + yy*) (da+ 2exy + hy?) }
— {3(b2* +2cay +dy*) (ya*+ 20ay +ey*) — (Ba®+2yxy +3y°) (ca’+ 2dmy +-ey?) }
=[0, 3]a'+(2[0, 4]+ ...)2% 4 {[0, 5]+[1, 4] —8[2, 3] }2°y*+ &e.
[The number —8 results from the calculation 1 —3(4—1)=—8.]
Again,
E,Q=(uy"—2uyx +us. ") 8 —2(uy.yy* — 20, yx +u, ) e+ (usy’ — 2u, yx 4 ua®) 2,
Q= (u,.y* —2u,y 2+ us2") (Y — 2u,y x4 u,0”) — (.Y — 2u, yx +u, . 2%)?
=u, Uy —2u, u, Y +u, e+ &e.,

all the terms and parts of terms unexpressed being free of u,, and therefore not
necessary for our purpose. Hence supplying the reciprocal factors

1 1
L s =3 5 § 50

we have

Gy=[0, 3Ty 2, ([0, 4]+ )45 ([0, 5]+ [1, 4]+ [2, 3]} uy+&e.

Again, expressing E,.f and E,.¢ in the usual way, we obtain
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T,=(ax*+4b2’y+6ca’y*+ 4dxy’ +ey4) (B2* +4ya’y + 62y’ + dexy® +7y*)
— (e 4-4B2°y +6ya’y’ 402y +ey*) (ba' +4ca’y + 6 dry> + dexy’ +hy?)
=[0, 1]2*44[0, 2]a’y+(6[0, 3]+)a%y>+(4[0, 4]+ )"+ ([0, 5]

+15[1, 4]4-20[2, 3])x'y'+ &ec.
(where it may be observed that the numbers 15 and 20 in the coefficient of x*.y*
arise from the quantities 4°—1; 6°—4%).

Again, Q,=Q°=u}.2°+8u, . ux"y +12u,. u 2’y —Bu, . u2’y* +2u,.u,.a'y* + &ec.

Hence supplying the multipliers

—1 1 —1 1
i s 955 33 g &e

we have
G, = [0, 17e8+4[0, ]2+ [0, 8Tutytes-5[0, 4, 2,

+5:([0,5]415[1, 47+20[2,3])u,.u;.
Again, the Bezoutiant
B=5[0, 1]u+2.10[0, 2]u,.%,+2.10[0, 3]u,.0,+2.5[0, 4]u,.2,+2.[0, 5]u,.u;+ &e.
Accordingly, if we write B=c,.G,+¢;.G;+¢;. G;, we have, as above remarked, ¢,=5 ;
and to determine c,;, c¢;, we have, by comparing the coefficients of w,.u,, u,.u, in
B, G, G,, G,
20:979 t-c,

20
10:—7—+C3.

These two equations, then, as it turns out, are not independent, but are satisfied

simultaneously by

50
03=7-

Finally, equating the coefficients of the several arguments in u,.u;, we have

1 1
0=5 X3—5+'5779XE+05 from the argument [0, 5]

15,50 1
0=5 X3—5+7X§+5C5 from the argument [1, 4]

20 50 8
0=5 x—§+—79x§+1005 from the argument [2, 3].

The 1st of which equations gives
_o 1 %5 _14_2
G=S—y =121 3}

the 2nd gives

3 5 2
c5=7+ﬁ=§,
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and the 3rd gives
20,2 2
05-—'2—1+7——§
We have thus abundantly verified the accuracy of the calculation, and there results
the relation
50 2
B=5Gl+—7—G3+§G5.
Lastly, let m=6,
JS=ax®+6bx"y+15ca'y*+20dx’y* + 1 5ex’y* + 6 hay’ + by
p=ca’+6B2%y + 15ya'y* 4 2002°y* 4 15ea’y* + 64y +ry°
Q=u,.y* —5u,.y'x+10u,.y°x*— 10u,y°2*+ 50y a* —u;. a5,
I shall here confine myself to the determination of a single argument in each of

the terms w} ; w,.%,; u,.uy; .U, 5 .U 5 u,.Us; this will be ample for the purpose of
verification, as the equation to be assigned is of the form

B=c¢,.G,+¢;.G;+¢;.G;.
The arguments which I select as the most simple, will be those expressed by the
symbols (0, 1); (0, 2); (0,3); (0,4); (0,5); (0, 6) respectively, then we have
T,=(ax+by) (ne+ry) F&e.— (ha+ly) (wx+By)
=([0, 5]4...)2*+ ([0, 6]+ ...)zy+(...)y’
Q5=(u1 Y- uﬂ’) (usy - uﬁx) 1&0
=(u 4+ .. )y — (uy U+ .. )y (..) 2%
Hence supplying the binomial reciprocals

1
1; -39 1,
1
G,=([0, 5]+...)u.us45([0, 6]4...)u,. w5+ &e.
Again,
Ty=(az*+...) 32+ 3ea’y + 3nxy* +2y*) F&e. — (da’ + Bex’y + 3hay> 4 ly*) (wx’+ ...)
=([0, 3]4...)2°+(3[0, 4]+...)2%y+(3[0, 5|+ ...)x'y’+ ([0, 6]+ ...)a*y*+ &c.
Q= (u,.y* F &e.) (usy’ F3u,y* + 3u,70* — uer’) — &e.
= (u, ust .. )Y — Buyu,+ )Y+ (Buy us .. )y et — (u w4 &e.,
and the reciprocal binomial multipliers will be

-1 +1 -1

i &3 155 200

&e.
Hence

Gy=[0, 3]s+ 30, 4Tttty Fo[0, 5]ty tty455 [0, 67,45 &o. K.
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Finally,
T, =(ax’+ &c.) (Ba* +5ya'y +108x*y* + 10ea’y* + 5wy +1y®) — &e.
=([0, 1]4...)a"+5([0, 2]+...)x°%y+(10[0, 3]+ ...)a%*+(10[0, 4] +...)a7y*
+ (5[0, 5]+ -..)2%*+ ([0, 6]+...)x%°+ &e.
Q,=Q=uy" + (10u,.u,+ ... )y’ . x4 (20w, u,+ ... )y’ + (20w, .u,+ )y'2®
+ (10w, 9, ... )y'c* + (2u, us+ .. )y*a*+ &e.;
and supplying the numerical series

1 1 -1 1 -1

s —Tos &5 120 7105 2525 &0
we have

G,=[0, 1]ui+5]0, 2]u1u2+4§0[0, 3]ulu3—|—§[0, 4] u,.u,

5 1
+ﬁ[0, 5]u,.u5+m[0, 6 Ju,.us+ &c.

Again, the Bezoutiant
=6[0, 1]ui+30[0, 2]u,.u,+40[0, 8]u, .u,+30[0, 4]u,.u,
+12[0, 5]u,.u,+2[0, 6 ]Ju,.u+ &c. &c.=B.
Hence making
B=c,.G,+¢,.G;+¢;. G,

from «} and »,.u, we obtain respectively

c,=6
5c,=30;
hence from u,.u, and u,.u, we obtain respectively

240

— ;=40
R P
30 3 T8
'§+"2'03=30,

hence from w,.u, and u,.u; we obtain respectively

5 40 3 . 10 18
6X§—1'+§-§+05=12, ie c;=12—8—p==%

777
1 40 1 1 . 1 2 1 9
LT L e Pl ) P
6X126—|—3.20+205_2, e 3C=2—3—51=7}
hence
18
Cs=2—7:

and the equation sought for is
B=6G,+75 Gyt Gy

Art. (71.). The following table exhibits the relations between the Bezoutiant and
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the correspondent system of Co-bezoutiants for all values of m between 1 and 6
under a synoptical form.

m=1 B=G,

m=2 B=2G,

m=3 B=3G,—4G,

m=4 B=4G,+3G,
m=5 B=5G,+2G,+3G,

m=6 B=6G1+‘—“§G3+17§G,,.

These series could if wanted be easily extended, and the calculation of the coeflicients
reduced to a mere mechanical procedure.

If we suppose m to be 2i or 2i—1, we have the equation
B:CI'GI+C3'G3+'"+C21'—1 CN
and it appears from the foregoing instances that the comparison of the coefficients,
either of uj, or of u,.u, on the two sides of the equation, will serve to give ¢, and ¢,
(which is always m being known), ¢, may be found by a comparison of the coeffi-
cients either of u,.u,, or of u,.u,, and so on for ¢,...c,_,; all the coeflicients in the
equation for B above given, thus admitting of being found separately and successively
and in two modes, so that there is a check at each step upon the correctness of the
computations: the only exception to this last remark is (when m is odd) for the last
coefficient of which the above condensed method affords only a single determination.
I need hardly add the remark, that in substituting ™', ¥ *.y; ...x.y" .. y" " in
place of u,, u,, ...u,_,, u, respectively, all the G’s become (to a numerical factor
prés) identical with one another and with the Jacobian to the system (fp).

Art. (72.). The foregoing theory took its origin (as will have been readily imagined)
in meditations growing out of the celebrated theorem of M. Sturm. There appear
to be several directions in which a development or extension of the subject matter of
that theorem may be sought for. Thus a theory may be constructed relative to a
single function of one or more variables, viewed in all cases as representing a geome-
trical locus. 1In the limiting case, when this locus becomes a system of points in a
right line, we have the theorem of Sturm; generally the theory will be that of con-
tours. Or, again, a theory may be formed in which the number of functions is
always kept equal to that of the variables. We have then a theory of discreet points
corresponding to roots, the number of real ones of which comprised within given limits
it is the object of such theory to determine. M. HermITE, in a memoir recently pre-
sented to the French Institute, appears to have made a valuable addition to the
Sturmian theory extended in this direction, to which the beautiful researches of
M. Cavcny and the joint labours of MM. LiovviLLe and Sturm, with reference to
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the disposition of the imaginary roots of equations appear to have led the way.
Finally, the number of variables may be supposed to be arbitrarily increased, but
made always inferior by a unit to the number of the functions in which they are
contained, or which comes to the same thing, we may construct the theory of a
system of homogeneous functions equal in number to the variables in them, which
in its simplest case becomes the theory of Intercalations which has been here par-
tially considered, and which (as has been shown) embraces (not as a particular case,
but as an implied consequence and easily extricated result) the theorem of M. Sturm.

London, June 25, 1853.

General and Concluding Supplement.

Art. (8.). The expressions given in art. (n.) for the partial quotients of the con-
tinued fraction represented by%p, are restricted to the supposition of all these partial

quotients (except the first) being linear in x; when the first partial quotient is linear
the formula (B.) of that article continues applicable on replacing (D; A,)by 1. I was
forcibly struck by the peculiarity of these formulese not ceasing to be true in conse-
quence of the first partial quotient being supposed non-linear; and reflecting upon
this, I was socn led to perceive that all the partial quotients might be supposed to be
arbitrary integral functions of «, and the formulee would still continue to apply to
any such of them as might happen to be linear, although, as it were, imbedded among
a group of other non-linear partial quotients. From this it was but an easy step to
perceive that the formulee A and B must admit of extension to the representation of
partial quotients of any form, and that the dimorphism of the representation of the
linear partial quotients could only be a consequence of the equation in integers u-4r=1
having two solutions v=0, v=1 and =1, »=0. I now proceed to enunciate the very
remarkable general theorem (or as it may perhaps not inappropriately be termed
Algebraical Perism), by virtue of which any partial quotient of a given degree in «
belonging to an infinite continued fraction, all of whose partial quotients are alge-
braical functions of », may be expressed to a constant factor prés, by means of the
numerator and denominator (or if we please either one of these) of the convergent
immediately antecedent to and of the numerator and denominator of any convergent
not antecedent to the partial quotient which is to be determined.

Art. (2.). Theorem. Let Q,, Q,, ...Q; Qiy,....Q,, &c., each of an arbitrary degree in
z, be the » first partial quotients of an algebraical continued fraction; let Q;,, be
the partial quotient to be determined and of the given degree «;; let

1 1 1 1 =
Q__]:——' QQ"' Q;__..-.—Q—i——%)‘
1 1 1 1 1 1 D(a)
and 8- G- a- 6=, e ")’
let # and » be any couple of integers of the w,,,+1 couples which satisfy the equation
u-+v=w,,,; then, as usual, denoting the product of the differences of each of one set
MDCCCLIIL, 4 A

~
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of terms from each of another set, by writing the former under the latter, and calling
M, Aye..7, the w roots of ®(x), and A, h,....4, the m roots of F(z), (P and F being sup-
posed respectively of w and m dimensions in x), and forming the disjunctive equations
0,050, ...,0,=1,2,3, ..... t
bty by eeny £a=1,2, 3, .....m,
we have the following equation,

Q.=K,,x 2{(@;‘.@%,....@9,)2 X (o Shoooe o)
o, Moy weeer 7y, v h’t, }Ltﬂ ..... htu
htu+1 htu+‘z““'}l’tu Mo, 41 ”9v+2"?"”9u

No, Noy weve- Ny, htl /LL2 ..... htu
X bk h
Ny i1 Moy sgoeve-To, tysr Mg ggeooe Py,

and moreover the different values of K, , depending upon the different modes of
breaking up «; into two parts « and » are all (to a numerical factor prés) equal to one
another. Thus then the theorem pointed at in art. (p.) is discovered, and the way
laid open (by an unexpected channel) for a complete discussion of the theory of the
singular cases which may occur in the expansion of any rational algebraical fraction
under the form of a continued fraction.

Art. (3.). In the above expression, if we suppose »,=1, we have =1 and »=0, or
u=0 and v=1, and remembering that

h ]
[7)1 772....77,‘] =®h and [hl h2....hm:l =Fh

h } l;% ]
! =Fh,and | ™ =Q'h,
[htz he, ool an gy Moe+++Mo,,

Q.., becomes by virtue of the general formula representable under either of the equi-
valent forms

(2 —1) (@=1) .o (— ) )((@—Prp) (z—=P,).

K,, 1 25{(@-779)2%@"’76)} and K, , E}n{(ﬂzt)?%(w-— lz-,)},
K, , and K, , being either equal, or differing only in the sign agreeably to the formulee
A and B.

Art. (7.). It may be worth while to notice, that, although (of course) these formulae
and the general formulee of (art. 2.), when supposed converted into functions of « and
of the coefficients of F and of @ by the reduction, integration and summation of the
symmetrical functions of the roots which enter into them remain universally valid,
and subject to no cases of exception, yet antecedently to these processes being per-
formed the formulee as they stand may become illusory when any relations of equality
exist between the roots of @ infer se, or between the roots of F inter se. Thus in the
case before us, if @ have equal roots the formulae commencing with K, , is illusory,
and if F have equal roots the other of the two formulee becomes illusory.

Let us take the second of these and suppose that F(x) has

k, roots c,, k, roots c,, ...k, roots ¢,

...(x-iz,,,,))},
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we may pass to the actual case from any case where the roots are infinitesimally
near to the actual roots of F(k), and all infinitesimally different from one another.
Moreover the choice of the infinitesimal variations being arbitrary, let the k, roots
¢, be replaced by a group of roots

01+B§ Cl+ael; 01+B§’?§ ceee 01+B§iﬁ~19
where ¢, is a prime root of the equation ¢f'=0, and 9 is an infinitesimal quantity, and
suppose each of the other groups to be varied in an analogous manner. Then it

may easily be shown from this that the one of the formulse in question will become
d\ k-1
d_c> {(fe)(Pe,)(x—c,)}

NG H
((76—) Fe,
and similarly, the twin formula becomes
d x—1 .
\ (;z;) {(@70)"(Fyo)(x—0)}
Ki=6 %, -k,
- i nq)
(d')’o> Yo

Corresponding modifications will admit of being made by aid of a like method in
the general formule of art. (2.) upon a similar supposition as to equalities springing
up between the roots of fx per se and of ¢(x) per se, or between the roots of fx and
ox inter se.

Art. (7.). If in (art. 2.) we take ¢=0, the formula for Q,,, will become

[ml o, ‘“”""]x "h,l hy, htu]
Q1=Ku ] htu+1 htu-}-g"'htu | 779”_‘_] ”ev+2 ...ney,

l‘”ﬂ ”92 anungy] X [ktl kt2 .o .htuJ
L_”ov+l (I "’70,,_ htu—H htu+2 "'h’tm

u and » being any two integers whose sum is &,, which is identical (as it ought to be)
with the expression virtually contained in the formulae of Section IL. for the syzygetic

multiplier of ®(z) in the syzygetic equation connecting Fx and ®z with their first
residue when @z is supposed to be w, dimensions in x lower than Fx identical,

K:,zélf,<
P

((x—ne‘)...(x—nev))((m—-htl) e(@—hy)),

. . F@
videlicet, in other words, with the integer part of the algebraical fraction @%5

¥ For in general if p is a prime root of the equation p»=1, and if fz have w roots all equal to ¢ and Yo is
any other function of 2 and if d is an infinitesimal quantity, then rejecting all powers of ¢ higher than the

(w—1)th degree,
Wetd)  Uoted)

Y(c+p%) U(c+po719)
LG M ) R4 ) M )

1
T@WZ{MW ) +p(c-+p3) + (e )+ ... +pw—'d/(c+p‘°-18>}
de ’ .

d\e—1 o d\e—1
(EZ‘) Yew?d 1— (EE \]/c.

w

T

4 A2
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Art. (3.). When ®(z)=F'(x),

DO(h,)DP(h,)...DP(h,,, ) ) ) . b e
l:h‘ 7, 7 :] becomes identical with (—)s“i+170%+1Z(h hy.. b, ),

coc T Twi
and we may consequently (using an extreme term in the forms in the polymorphic
scale of forms representing Q,,,), write

Qi =(—)5onvein K w12 e b N (R (fi o) (fih, ) (@ —Ry) (2 — ). (2=, ).
Art. (1.). The following observations will serve to complete the theory of the
singular cases in the expansion of an algebraical continued fraction.
Preserving the notation of art. (2.), let ‘
s=m— (o 4ot .. Fa+1),
Then (calling the roots of Fa, 4, h,...A,) the (¢)th simplified residue to 1%, in accord-

ance with the general formulee for the residues in the second section (for greater
simplicity selecting an extreme term of the polymorphic scale), will be represented by
Dh, Phy, Oh,... P(h,,)

by kg hy .k
I_h1+v.- hz+a,- h3+ﬂi“°hm]

(z—h)(®x—h,)(x—hs) ....(x—h,),

which will be of the form La"~**'4 &ec., all the terms containing powers of « superior
to o; vanishing by the coefficients becoming zero. If in the above expression we
should use o;in lieu of ¢;, where o; is o; diminished by any integer inferior to »;, we should
get other forms of the same residue, but these will all be of higher dimensions in the
roots or coeflicients than the one just given, and in fact the forms thus obtained
corresponding to the values o;, 6;—1, 6;,—2, ....0;—a;+1 substituted for o; in succes-
sion, would by aid of the relations of condition between the coefficients of ®x and
Fz implied in the value of »; admit of being exhibited as a scale in which each form
would be an exact algebraical product of the form which precedes it, multiplied by a
function of the coefficients, and did space permit thereof it would be perfectly easy to
give the forms of these multiplicators. But I pass on to the representation of what
is more material, viz. the form of the complete residue in the case supposed, merely
observing (as an obiter dictum) that the existence of each singular partial quotient
(meaning thereby a quotient non-linear in x) only affects the form of the single
simplified residue in immediate connexion with itself, and not at all the form of the
other residues antecedent or subsequent to that one.

Art. (r1.). Let the éth simplified residue be called R; and the corresponding com-
plete residue [R;], then applying a method similar to the method given in Section I.,
we shall find that

Ly L Lyt &e.

(=)’ [Ri] =L:>i;1+‘ Lot &e, v
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L, representing the leading coefficient in the (ith) simplified residue, and the sign of
interrogation (?) denoting some function of w, w,...»; (possibly a constant) remaining
to be determined. And reverting toart. (3.), the quantity that would be called K, |,
according to the notation employed in the formula expressing Q;,, in that article, will
(abstraction being made of the algebraical sign and using for greater brevity (),
(1—1), &e. to express 14w, 14-w;_,, &c.) come to be represented by
LTV LY. L &e.
LO LY LT &)

a similar convention being supposed to be made respecting the numerator and deno-
minator of each convergent as was made vespecting them in the particular case
treated of in art. (f), page 473.

Art. (0.). I will merely add a very few words in generalization of the method of
limiting the roots of fx given in the Supplement to the fourth Section. As an inferior
limit to fx is identical with a superior limit to f{—x), we may confine our attention
to superior limits alone. Suppose then that

¢z 1 1 1 1 1 1 1 1 1

0= Q= Q= Q= Q=@ (@), — @@

where the partial quotients Q are each of any arbitrary degree in «, and have all one
algebraical sign in the coefficients of the highest powers of # from Q, to Q;, and all
the same sign (contrary to the former), in the coefficients of the highest powers of x
from Q; to Q;, and so on alternately, then 1°, a superior limit to the superior limits of
the cumulants [Q, Q,...Q.], [Q) Q:...Q:], ...[(Q), (Q)s..-(Q)] Will be a superior
limit to f, so that it remains only to give a rule for finding a superior limit to a
cumulant [Q,, Q,, Q;...Q;], which, 2°, is to be found by making

Q—M,=0,Q,—M,=0, Q,—M,=0...Q;—M,;=0,

where M, =, M2=M2+.‘%1 M3=FJ3+‘;1“2---M1'=‘%,

fors ey - - iy being any quantities entirely independent and arbitrary except in regard

to their being all of the same sign as the leading coefficient in the element Q,, Q,...Q,.
We may then find L,, L,, ...L; any superior limits to the roots of x in these ¢

equations respectively ; L, the greatest of these, will be a superior limit to the proposed

cumulant [Q, Q,...Q;]; and it may be observed that M, M,...M; are the general values

which satisfy the equation

1 1 1

MI—MQ‘— N.ld‘_‘ ...Mi= g

subject to the condition that for all values of e
1111
M,— M-, M.=,"""M,
shall have a given invariable sign. The first part of the process, as just shown, con-
sists in separating the type of the total cumulant which represents fr into partial
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types, the point for each fracture of the total type being marked by a change of sign
in the elements of the type for the value x=--co ; it is easily seen therefore from this,

that if -F—‘-; is the generatrix of the cumulant in question, the number of such fractures

(i. e. the number one less than the number of partial cumulants) will be the number
of changes of algebraical sign in the signaletic series, consisting of the leading coeffi-
cients in Fo and in each of the odd-placed complete residues respectively, together
with the number of changes of sign in the signaletic series, consisting of the leading
coefficients in @z and in each of the even-placed complete residues respectively.

The syzygetic theory of two algebraical functions, and the allied theory of alge-
braical continued fractions with their principal applications, may, I think, now be said
to be completely made out, as well for the singular cases as for the general hypo-
thesis.

Art. (). I'will conclude with observing that the theory within developed gives the
means of transforming (explicitly and without the aid of symmetrical functions) into
an algebraical continued fraction, any given sum of algebraical fractions of the form

4] Cn

w-w-hl z— Iz+x hg x—h’

where each ¢ and % are supposed known. For let the above sum be called ) ), then

if A, ¢, be used to denote any pair of corresponding terms of the k& series and the ¢
. DA . . ..

series, we have IT"ZZ= ¢, as is well known and easily proved. Again, if Dz represent

the simplified denominator of the ¢th convergent to the continued fraction equal to

(b which is to be found, say
1 1 1
(A1m+Bl)~ (AQ‘Z'+BQ)—.“.AWZ'+B7I,
I, DI,... Dk,

we have D=2 (x—h)(x—h,)....(x—1,),

h, hy ...h;
higy Pivg oo by,

—s(— )(z I)Z(h }jf’h j)ikl;blzf(phl(x_hl)(m—hz)(«Z’—'h.)

= (=) TS0y 0 (P ) (T— ) (T— D) oo (T— ) }.
Therefore  (Dihn)*={Z(Cscy.Cors)ZiahgeerTin) (i) By h) oo (B by ) 1
—{S(utseCon)) GBllhgr e ) i) | 3

and the simplified (¢-41)th quotient, 7. e. the value of A, ,x+B,.,, when divested of
the allotrious factor, has been proved to be equal to

D/
E(D,.hl)2m’;(w-—hl) ;
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it is therefore now known as a rational and infegral function of «; hh,...h,; ¢c,...c,.
The allotrious factor itself is made up of the product of squares of quantities all of
the same form as the leading coeflicient in D,r, which, from what has been shown
above, is seen to be equal to

(=) 2{(€,Cpuer € (Mihgan )}
Hence each term in the continued fraction

1 1 1
(Az+B))— (A2 +Bg)—""" (Anz + Ba)’

which is to be made equal to

o c Cn

oy i oy

is completely assigned in terms of 2 and the given quantities ¢ and A.
Art. (9.). The number of effective intercalations between the roots of @z, Fu is easily
seen to be equal to the excess of the number of positive real numerators over the

number of negative real numerators in the partial fractions of which F_;L:. is the sum,

and hence we see & priori, as an obvious consequence of a simple extension of the
reasoning in art. (47.), that the inertia of the quadratic function

2{co(ul+h6u2+k§u3+....+h “‘.u,,)2xiko},

Dhy . . s
where CB:F_'EZ will represent the value of the index in question. So too we may

see that the formulee given for the residues to fx, f'x in art. (46.) continue to apply

to the residues Fr, @x. That is to say, these residues when divided out by Fx will be
respectively represented by the successive principal coaxal determinants to the matrix
SS, S, .S,
S,S, S, ...S,
S,S.S;  ..S,n

Sm-— lSm Sm+ 1°° 'S2m-27
[ Cq

where in general S,:w_hlh’;+m_}lzh;+ ek

Cp
x—h,

b,

and using the same matrix as above written with S' substituted for S, where in general
S,=c,(x—h);+c,(x—h) i+ ... +c,(x—h, ) 5,

the successive principal coaxal determinants of the new matrix represent the succes-

sive denominators to the convergents of the continued fraction which expresses %

The expression for the numerators to the convergents may also, there is no doubt,
be obtained by some simple modification (dependent on introducing the quantities
€,Cy...C,) of the formula in art. (41.), p. 465.

I annex, more with the hope of suggesting than (in all instances) of conveying a
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full conception of the force of the definitions, a Glossary, or rather a Repertory of
the principal terms of art employed in the preceding pages, which might otherwise
be apt to occasion some difficulty to persons unfamiliar with the subject.

ERRATA AND ADDENDA.

Page 408, 410, 412, 414, in running head to page, for Conjugate read Syzygetic.
408, line 16 from foot, for above read about.
—— 409, line 4 from top, for continual read continued.

—— 429, line 12 from foot, for the same r new, read the same number r of new.
~——— 430, line 3 from foot, after simplicity insert a comma.

— read
Tnr 9.1

~——— 432, line 3 under (15.), after fraction dele —
——— 434, at end of the equation nearest the foot, for (x Y m) read x—1, ,

—— 436, in equation (21.), for (m-—%’) read (“"‘"75,,)‘
—— 436, line 2 under (21.), for ky, read ky. ‘
—- 438, line 10 from foot, for (A,) (r,) (An=1) read Ay A; Ap—1.
—— 439, line 3 from top, after the words * solution of ”’ insert *‘ the equation.”
—— 439, line 10 from top, for and therefore read then.
—— 444, line 2 from top, for or read i. e.
—— 448, Art. 28, line 3, for e—am™ read ex™.
—— 452, line 1, for but read for.
—— 454, lines 5 and 14, for fm read f,.
458, line 4 in Art. 37, for fx read f'x.
—— 459, line 7 in Art. 38, for —9 read +39.
—— 464, line 15 from foot, for k,=k,—k; read k,=k,=k;.
~—— 467, line 6 from foot, for Latin and Greek read Latin, Greek and Hebrew.
—— 479, Art. p, line 2, for 3 and £, read 3}, and =,
—— 479, last line, for subscrolet read subscript.
—— 481, in the value of y; near foot of page, for the sign — read +
def dof

~—— 482, middle of th ——
middle of the page, for dx? read ax

—— 432, line 2 above (15.), for

~—— 485, line 10, for p read x.

—— 497, Art. 8, for Now read Also.

—— 504, line 12, dele 'w,.

—— 514, Art. (61.), lines 7 and 8, for ay.x™ and by, X read an.y™, by y™.
— 515, line 4, for uj, uj...un read uj, uj...ul.

1

e ST oy

—— 518, near middle of page, 1
e S r W ey
d

——— 524, near middle of page, for a,. dil—read ot
&y &,
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Glossary of new or unusual Terms, or of Terms used in a new or unusual sense in the
preceding Memoir.

Allotrious.—The allotrious factor to a residue or quotient in the process of common measure ap-
plied to two algebraical functions is the constant factor of which such residue or quotient must be
divested in order to become an integral and irreducible function.

Apocopated.—Applied to a type in the Theory of Cumulants, denotes a type the final or initial
element of which has been taken away. If both are taken away, the type is said to be doubly
apocopated.

Bezoutic—For definition of Primary and Secondary Bezoutics see first Section. Bezoutiant to
two functions, each of degree n, is a homogeneous quadratic invariantive function of » variables,
the form of which serves to assign the index of the scale of the effective intercalations of the real
roots of the two given functions.

Bezoutoid—The Bezoutiant to two homogeneous functions obtained by differentiation from one
homogeneous function of two variables. The Bezoutoid to a given function of m dimensions in the
variables is accordingly a quadratic function of (m—1) variables, the form of which is sufficient for
determining the number of real roots in the given function.

Characteristic—The employment of this word has been avoided in the preceding memoir ; but as it
contains an idea of capital importance in analysis, and especially in all inquiries of the kind here
treated of, I subjoin the definition of its meaning. The characteristic of a simple condition of any
kind is the rational integral function (in its lowest terms) whose evanescence necessarily and uni-
versally implies and is implied by the satisfaction of such condition. A simple condition has always
a single characteristic, abstraction being made of the algebraical sign, which remains indeterminate.
In like manner, a multiple condition, or a system of conditions, will have for its characteristic a
plexus of rational integral functions, whose evanescence necessarily and universally implies and is
implied by the satisfaction of such multiple condition or system of conditions. The number of
functions in the characteristic plexus will however in general greatly exceed the index of the
multiplicity of the conditions, and need not always be a unique system. There are however excep-
tions to this: thus the duplex condition, that a biquadratic function of z shall contain a cubic factor,
or that a curve of the third degree shall have a cusp, will each be definitely characterized by a
plexus of two functions, and no more.

The spirit of the higher analysis resides, and is to be sought for, in the logic of characteristics.

Co-bezoutiant.—Any homogeneous quadratic function similar in form and in its property of
invariance to the Bezoutiant.

Cogredient and Contragredient.—A. system of variables is cogredient to another system when it is
subject to undergo simultaneously therewith linear substitutions of a like kind, and contragredient
when it is subject to undergo linear substitutions simultaneously therewith but of a contrary kind.

Combinant.—A function of the quantities appearing in a given set of functions which remains
unaltered as well for linear substitutions impressed upon the variables as for linear combinations of
the functions themselves.

Concomitant.—Nomen generalissimum for a form invariantively connected with a given form or
system of forms,

Conjunctive.—A syzygetic function of a given set of functions. Any function which universally,
MDCCCLIIT. 4B
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and sulject to no cases of ewception, vanishes when a certain number of other functions all vanish
together must be a conjunctive (i. e. a syzygetic function), or aroot of a conjunctive of such functions.
But if its vanishing is subject to cases of exception, then all that can be predicated of it is that it is
syzygetically related to such functions, but it may, and usually does happen, that it will be syzy-
getically related to them in more than one way.

Contravariant.—A function which stands in the same relation to the primitive function from which
it is derived as any of its linear transforms to an inversely derived transform of its primitive.

Covariant.—A function which stands in the same relation to the primitive function from which it
is derived as any of its linear transforms to a similarly derived transform of its primitive.

Cumulant.—The denominator of the simple algebraical fraction which expresses the value of an
improper continued fraction. See Zype, infra.

Determinant.—This word is used throughout in the single sense, after which it denotes the alter-
nate or hemihedral function the vanishing of which is the condition of the possibility of the coexist-
ence of a system of a certain number of homogeneous linear equations of as many variables.

Dialytic—1If there be a system of functions containing in each term different combinations of the
powers of the variables in number equal to the number of the functions, a resultant may be formed
from these functions by, as it were, dissolving the relations which connect together the different
combinations of the powers of the variables, and treating them as simple independent quantities
linearly involved in the functions. The resultant so formed is called the Dialytic Resultant of the
functions supposed ; and any method by which the elimination between two or more equations can
be made to depend on the formation of such a resultant is called a dialytic method of elimination.
In such method accordingly the process of elimination between equations of a higher degree than
the first is always reduced to a question of elimination between equations which are of the first
degree only.

Discriminant.—The resultant of the » differential coefficients of a homogeneous function of % vari-
ables. See Resultant, infra.

Disjunctive—A. disjunctive equation is a relation between two sets of quantities such that each
one of either set is equal according to some unspecified order of connexion with some ane of the
other set.

Effective scale of intercalations is the series of the real roots of twa functions of 2 written in
order of magnitude after repeated processes of removing pairs of roots belonging to either the
same function (when not separated by roots of the other function) : the roots of the two functions
follow each other alternately.

Effluent —From every homogeneous function of any number of variables i of the degree mm/,
where mm' are any two integers, may be formed (as shown in the Calculus of Forms, Section 1.) a
covariantive function of the degree m and of p variables [where x is the number of permutations
that can be obtained by dividing =/ into ¢ parts (zeros admissible)], in which all the coefficients are
numerical multiples of the given coefficients ; covariants so formed may be termed effluents of their
primitive. An example of this occurs in the foot note to Section V. p. 522, where the quantity there
called Q is a quadratic effluent of the Jacobian.

Element.—A simple component of the type to a cumulant. See Cumulant, supra.
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Emanant—The result of operating any number of times (suppose ¢ times) upon a given homo-
geneous function of any number of variables #, y, z...¢ with the operative symbol
(x'% + y’% + z’d% ot t’%),
is called the ith emanant of the function operated upon. Every emanant is a covariant to its primi-
tive, the new variables 2/, ¢/, 2/,...#' being cogradient with the variables =, y, z...t with which they
are respectively associated. Koy:f, Eq1:p, page 522, are emanants of fand ¢. The process of
emanation is one of incessant occurrence in the theory of invariants. When the order of the emana-
tion is the same as the degree of the function (supposed to be rational and integral) from which
the emanation proceeds, the form of the original function is reproduced in the final emanant, the
names only of the variables being changed.

Endoscopic, Exoscopic.—When the coefficients of the functions concerned in any investigation are
regarded as integral indecomposable monads, the method is called exoscopic, and endoscopic when
the coefficients are treated with reference to their internal constitution as composed of roots or other
elements.

In addition to the examples in the foot note to Section 1, these words have a marked and most
important application in the theory of Invariants, especially of two variables.

Form.—Any function may be regarded as an opus operatum ; the matter operated upon being the
variables, and the substance of the operations being the form, which resides in the function as the
soul in the body. A form is always common to an infinity of functions, but for greater brevity may
be and frequently is called by the name of some specified function in which it is contained.

Fundamental.—The fundamental scale of a system of Invariants or Concomitants is a set of the
same, whereof every other is a Rational Integral Function.

Hessian or Hessean, named after Dr. Orro Hessg, of Konigsberg (the worthy pupil of his illus-
trious master, JAcoBI, but who, to the scandal of the mathematical world, remains still without a
Chair in the University which he adorns with his presence and his name), is the Jacobian to the
differential coefficients of a homogeneous function of any number of variables. It is to a Jacobian
what a Bezoutoid is to a Bezoutiant, or a Discriminant to a Resultant.

Hyperdeterminants.—See Memoir of Mr. CayrLey, Cambridge and Dublin Mathematical
Journal, May 1845, and CRELLE’s Journal of about the same date.

Improper, continued fraction is a continued fraction differing only from an ordinary one in the
circumstance of negative signs being substituted for positive signs to connect the terms.

Inertia.—The unchangeable number of integers in the excess of positive over negative signs which
adheres to a quadratic form expressed as the sum of positive and negative squares, notwithstanding
any real linear transformations impressed upon such form.

Intercalations.—The theory of intercalations is the theory of the relative distribution of the real
roots, or point-roots, of two or more equations, but in this theory the number of roots mutually
interposed is to be taken only with reference to the number 2 as a modulus.

Invariance~The property (under prescribed or implied conditions) of remaining invariable.

Invariant.—A. function of the coefficients of one or more forms which remains unaltered when
these undergo suitable linear transformations,
482
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Inverse.—The inverse to a given square matrix is formed by selecting in its turn each component
of the given matrix, substituting unity in its place, making all the other components in the same
line and column therewith zero, and finally writing the value of the determinant corresponding to
the matrix thus modified in lieu of the selected component. If the determinant to the matrix be
equal to unity, its second inverse, i. e. the inverse to its inverse, will be identical, term for term,
with the original matrix.

Jacobian.—The Jacobian to » homogeneous functions of » variables is the determinant repre-
sented by the symmetrical collocation in a square of the # differential coefficients of each of the »
functions.

Kenotheme.—A finite system of discrete points defined by one or more homogeneous equations
in number one less than the number of variables contained therein.

Limiting Series.—One set of quantities whose extreme values are exterior to the extreme values
of a second set is set to limit the latter.

Matriz.—A square or rectangular arrangement of terms in lines and columns.

Minor Determinant.—Any determinant retained represented by a square group of terms arbi-
trarily chosen out of a matrix is a minor determinant thereto. The simple terms of the matrix are
the last minors, and of course if the matrix is a square, it will itself in its totality represent a single
complete determinant.

Monotheme.—A line, or finite system of lines, defined by one or more homogeneous equations two
less in number than the numbers of the variables contained therein.

Order.—The orders of a homogeneous function are the linear functions of the variables the least
in number by aid of which the function admits of being expressed.

Persymmetrical.—A symmetrical matrix, in which all the terms in the diagonal bands transverse
to the axis of symmetry are identical, is said to be persymmetrical. Ex. An addition table.

Quadrinvariant.—An invariant of which the terms are quadratic functions of the coefficients of
the primitive.

Relation (simple and compound). Vide Substitution, infra.

Resultant.—The resultant of » homogeneous general functions of » variables is that function
of their coefficients which, equalled to zero, expresses in the simplest terms the condition of the
possibility of their coexistence.

Rhizoristic—A. rhizoristic series is a series of disconnected functions which serve to fix the
number of real roots of a given function lying between any assigned limits.

Signaletic—A signaletic or Semaphoretic series is a sequence of disjunctive terms, considered
solely with reference to the algebraical signs of plus and minus which they respectively carry.

Singular.—A proper algebraical function of a given degree, #, in one variable in its most general
form, will, in respect to that variable, be of the nth degree in the denominator and the (n—1)th
degree in the numerator, and will admit of being represented by a continued algebraical fraction of
n terms, all of them linear.

But for particular values of, or relations among, the coefficients entering into the given fraction
this mode of representation fails, and the continued fraction, instead of consisting of linear terms
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»n in number, will consist of terms, some of them at least, non-linear, and fewer than » in number.
These then are the singular cases (or cases of singularity) in the theory of the development of an
algebraical fraction under the continued fraction form; and it will be seen that according to this
definition the case of the development of any proper algebraical fraction in which the degree of the
numerator is more than one unit below that of the denominator, belongs (strictly speaking) to the
class of singular cases; and this view of the case supposed is perfectly correct and conformable to
the analogies of the subject.

Substitution (linear, similar or contrary).—Alinear substitution is said to be impressed upon a system
of variables when each variable is replaced by a linear conjunctive of all the variables. The matrix
formed by the coefficients of substitution arranged in regular order is called the Matrix of Substitu-
tion, and is of course a square. When two substitutions (impressed in two systems of variables)
have the same matrix, they are said to be similar and confrary when their matrices are contrary,
i. e. mutually inverse to each other. When two systems of variables are supposed to be subject to
the condition that their substitutions are always similar or always contrary, they are said to be
related or in simple relation, the relation being of cogredience in the one case and of contragre-
dience in the other.

When a linear substitution is impressed upon a system of independent variables, a corresponding
linear substitution is necessarily impressed at the same time upon every complete system of homo-
geneous combinations (i. e. products and powers and products of powers) of these variables, the
matrix to which latter substitution will consist of terms which will be functions (depending upon
the degree of the homogeneous combinations) of the terms of the matrix to the primitive substitu-
tion. This matrix may be termed a compound matrix, having the primitive matrix for its base.

If, now, two systems of independent variables are subject*to be synchronously impressed with
substitutions, the matrices to which (not being both of them simple matrices) have for their bases
matrices which are either similar or contrary, these two systems will be said to be in compound
relation of cogredience in the one case, and of contragredience in the other.

Syrrhizoristic.—A syrrhizoristic series is a series of disconnected functions which serve to deter-
mine the effective intercalations of the real roots of two functions lying between any assigned limits.

Syzygetic—A syzygetic function or conjunctive of a number of given rational integral functions
is the sum of these affected respectively with arbitrary functional multipliers, which are termed
the syzygetic multipliers. When a syzygetic function of a given set of functions can be made to
vanish, they are said to be syzygetically related.

Transform.—Equivalent to the French noun substantive ¢ transformée.”

Type.—The type of a cumulant is the series of the simple elements (or quotients), arranged in a
fixed order, of which the cumulant is composed.

Umbral.—The umbral notation is a notation according to which simple quantities are denoted by
syllables, instead of by single letters (the composition of these syllables being governed by the mode
in which the quantities which they express are obtained); and the single letters of such syllables

are termed umbral quantities or umbre.

Weight.—In this memoir (throughout the earlier sections) the weight of any quantity composed
of the product of the coefficients of any given function or functions of # is used to denote the
number of roots of # appertaining to the given function or functions which must be employed
to express such quantity. More generally, when dealing with a system of homogeneous functions,
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the weight of a quantity may be defined with respect to any selected variable therein as the sum
of the weights in respect to such variable of the several coefficients of which the quantity is com-
posed (the weight of each several coefficient meaning the index of the power of the selected variable
in that term of the given function or functions which is affected with such coefficient). These two
definitions of weight may be perfectly well reconciled with each other by understanding the weight
of a quantity formed from the coefficients of a function or system of functions of # to mean the weight,
in respect o unity, of such quantity when the given functions are treated as homogeneous functions
of # and 1.

Zeta.—The symbol & (preceding a row of bracketed terms) is used to denote the product of the
squared differences of the terms which it affects.

[ J. A bracket of this form, when inclosing a superior and an inferior row of terms m and # in
number respectively, indicates the mn products of the differences obtained by subtracting each term
in the second row from each term in the first row; when enclosing an arrangement of terms in a single
line, it is used to denote the cumulant of which such an arrangement is the type.
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